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Abstract

Madaline Rule II, MRII, is a supervised learning algorithm for training layered feed-forward

networks of Adalines. An Adaline is a basic neuron-like processing element which forms

a binary output based upon a weighted sum of its inputs. The algorithm was developed

based on the minimal disturbance principle. This principle states that changes made to

the network to correct errors should disturb it as little as possible. A method to insure

all processing elements share responsibility for forming the global solution was introduced

and called usage. Details of the algorithm were developed with consideration for hardware

implementation. 4 -

Simulation results of MRII are presented. The algorithm exhibits interesting generaliza-

tion properties. Generalization is the network's ability to make correct responses to inputs

not included in the training set. Networks that contained more Adalines than necessary to

solve a given training problem exhibited good generalization when trained by MRII. The

algorithm was found to not always converge to known solutions. A failure mode of the

algorithm was identified and is detailed in this report.

The sensitivity of Madaline networks to random changes in weights and errors in in-

puts was investigated. Simple formulas were found to predict the average change of the

input/output mapping due to these effects. These results apply to networks where the

individual weights are selected independently from a random distribution.

iv



Preface

The guidance and direction of Dr. Bernard Widrow during the conduct of this research is

gratefully acknowledged. -His insistence for simplicity and clarity forced me to arrive at

simple results. He is largely responsible for any utility the results presented here have.

The support of Ben Passarelli of Alliant Computer Systems Corporation is also greatly

appreciated. Ben made available his company's equipment for performing many of the

simulations presented in this report. More importantly, he gave selflessly of his time to

teach me how to best use the equipment and make it available on weekends.

My colleagues in the "zoo" have been the source of much inspiration. Special thanks goes

to Maryhelen Stevenson who proofread much of this report before the reading commitee.

Her competence saved me some embarrassment.

During the period of this research, the author was an active duty officer in the United

States Air Force. He was assigned to Stanford University under the Civilian Institutes

Program of the Air Force Institute of Technology. No information or statement contained

in this report should be construed to be supported by or representative of the policies or

views of the United States Air Force.

v



Contents

Abstract iv

Preface v

1 Introduction 1

1.1 Contributions .......................................... 1

1.2 The Adaline ............................................ 3

1.3 Early Madalines ....... ................................. 6

1.4 Concept of Madaline Rule II - Minimal Disturbance ................ 12

2 Mathematical Concepts 16

2.1 Multi-Dimensional Geometry ....... .......................... 16

2.2 Hoff Hypersphere Approximation .............................. 19

3 Details of Madaline Rule II 23

3.1 Desired Features for a Training Algorithm ........................ 23

3.2 Implementing MRII ........ ............................... 24

3.3 Usage ......... ....................................... 31

4 Simulation Results 33

4.1 Performance Measures ..................................... 33

4.2 An Associative Memory ....... ............................. 35

4.3 Edge Detector ........................................... 36

4.4 The Emulator Problem ..................................... 41

5 A Failure Mode of MRII 45

5.1 The And/Xor Problem ..................................... 45

vi



5.2 A Limit Cycle ......... .................................. 47

5.3 Discussion ........ ..................................... 55

6 Sensitivity of Madalines to Weight Disturbances 58

6.1 Motivation ......... .................................... 58

6.2 Perturbing the Weights of a Single Adaline ..... .................. 59

6.3 Decision Errors Due to Input Errors ...... ...................... 64

6.4 Total Decision Errors for Adalines and Madalines .................. 73

6.5 Simulation Results ........ ................................ 75

6.6 Discussion ........ ..................................... 81

7 Conclusions 85

7.1 Summary ......... ..................................... 85

7.2 Suggestions for Further Research .............................. 86

Bibliography 87

vii



List of Tables

4.1 Performance for the edge detector problem. Averages are for training on 100

nets beginning at random initial weights ......................... 40

4.2 Training and generalization performance for the emulator application. The

fixed net was 16 input, 3-feed-3 ................................ 43

5.1 Truth table for the and/xor problem ............................. 47

5.2 The input pattern to hidden pattern to output pattern mapping for State 1.

Incorrect output responses are marked by * ...... ................... .... 48

5.3 The results of trial adaptations from State 1 ........................ 51

5.4 Mapping information for the network in State 2 ..................... 51

5.5 Mapping for the postulated State 3 ............................. 54

6.1 Effects of perturbing the weights of a single Adaline. The predicted and

simulated percentage decision errors for weight disturbance ratios of 5, 10,

20 and 30 percent are shown for Adalines with 8, 16, 30, and 49 inputs. . . 76

6.2 An output Adaline sees errors in its input relative to the reference network.

Predicted and observed frequency of each number of input errors and pre-

dicted and observed error rates for each number of input errors are presented. 78

6.3 Percent decision errors for a 16-input, 16-feed-1 Madaline with weight dis-

turbance ratios of 10, 20, and 30 percent ......................... 79

6.4 Simulation vs. theory for a multioutput Madaline. The network was a 49-

input, 25-feed-3. A decision error occurs when any bit of the output is

different from the reference .................................. 80

viii



List of Figures

1.1 The adaptive linear neuron, or Adaline .......................... 3

1.2 Graph of Adaline decision separating line in input 2-space ............... 5

1.3 Structure of the Ridgway Madaline ...... ....................... 3

1.4 Implementation of the AND, OR and MAJority logic units using Adalines

with fixed weights ........................................ 9

1.5 Ridgway Madaline realization of the exclusive-or function ........... ... 11

1.6 Graphical presentation of the Madaline of Figure 1.5. The Adalines map the

input space into an intermediate space separable by the OR unit ....... .. 11

1.7 A three layer example of the general Madaline ..... ................ 13

2.1 The differential area element of a hypersphere as a function of the polar angle

S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 A lune of angle 0 formed by two bisecting hyperplanes ................. 22

3.1 Block diagram implementation of a Madaline trained by MRII ........ .. 25

3.2 Structure of a single layer within the network of Figure 3.1 ............ 26

3.3 Block diagram of the Adalines for Figure 3.2 ....................... 27

3.4 An Adaline modified to implement the usage concept ................ 32

4.1 Diagram of a translation invariant pattern recognition system. The adaptive

descrambler associates a translation invariant representation of a figure to

its original representation in standard position ..................... 37

4.2 Learning curves for patterns and bits for the adaptive descrambler associative

memory application. Average of training 100 nets. Data points are marked

by "o" ................................................ 38

4.3 A component of an edge detector system. The Madaline outputs the position

of the first black pixel in a binary code .......................... 39

ix



4.4 Training a network to emulate another. The fixed net provides desired re-

sponses for the adaptive net ....... ........................... 41

4.5 Tracking of generalization and training performances. Network is a 16 input

9-feed-3 emulating a 3-feed-3 fixed net ............................ 44

5.1 Graphical representation of a network that solves the and/xor problem. . . 46

5.2 Graphical presentation of State 1 ............................. 49

5.3 Graphical presentation of trial adaptations from State 1 ............... 50

5.4 Separation of the hidden pattern 3pace for State 2 .................. 52

5.5 An output separation that would give State 3 ...................... 53

6.1 Comparing a network with a weights perturbed version of itself ........ .. 59

6.2 Reorientation of the decision hyperplane due to a disturbance of the weight

vector. Patterns lying in the darker shaded region change classification. . . 61

6.3 Geometry in the plane determined by W and AW ................... 62

6.4 The nearest neighbors of )9 lie equally spaced on a reduced dimension hyper-

sphere ................................................. 66

6.5 All the patterns at distance d from 91 will be classified the same as X-1. Some

of the patterns at distance d from X2 are classified different from 92 ..... .. 67

6.6 A representation of the location of the patterns at distance d from the input

vector X . ......... ...................................... 68

6.7 A representation of the geometry in the plane formed by W and )9...... .. 69

6.8 Representation of the geometry in the hyperplane containing the patterns at

distance d from XZ. This hyperplane is the floor of thc shaded cap in Figure 6.6. 70

6.9 Sensitivity of the single Adaline. Dotted lines are simulation results for

Adalines with 8, 16, 30, and 49 inputs. Solid line is the theory prediction by

the simple approximation. Data is taken from Table 6.1 ................ 77

6.10 Percent decision errors versus percent weight perturbation. Network is a

16-input, 16-feed-1 Madaline. Theory predictions by two different levels of

approximation are shown with simulation results. Data from Table 6.3. . . 80

6.11 Decision Errors vs. Weight Perturbation Ratio for a multioutput Madaline.

Network is 49-input, 25-feed-3. Data taken from Table 6.4 ............. 81

x



6.12 Sensitivity of networks as nj is varied. The net used had 49 inputs, 1 output

Adaline and the percent weight perturbation ratio was 20%. Actual data

points for the simulation results are marked by "o" ................... 83

xi



Chapter 1

Introduction

Research in the field of neural networks has seen a resurgence of interest in the past several

years. Neural networks offer the hope of being able to teach a machine how to perform

a given task by showing it examples of sample behavior. Since the machine learns by

experience, the task at hand does not need to be decomposed into an algorithm that can

be programmed into the machine. This dissertation investigates a method by which a

particular type of neural network can be trained.

The neural network to be trained is a layered feed-forward Adaline network. The term

Adaline, which stands for "adaptive linear neuron," was coined by Widrow in 1959 [1]. The

original work presented in this report builds on the work done by Widrow and many of

his graduate students in the early 1960s. This introduction will review some of this past

work on Adalines and simple networks of Adalines, called Madalines for "many Adalines."

The concepts behind Madaline Rule II, which is a method for training more complicated

networks of Adalines, will also be presented.

1.1 Contributions

This dissertation presents two major contributions. The first is the Madaline Rule II algo-

rithm, MRII. The second is the sensitivity results presented in Chapter 6. There are some

minor contributions within these two major ones.

The Madaline Rule II, as the "II" suggests, is the result of continuing work started by

others. This introduction chapter will outline this previous work. First the Adaline will be

presented. Then a simple network of Adalines called a Madaline will be presented. This
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early Madaline has a much simpler structure than that addressed by Madallne Rule II.

The procedures for training these two simple structures are grounded in a concept called

minimal disturbance. Minimal disturbance is a basic concept behind MRII and is the

author's inheritance from the early researchers. The last section of this chapter explains

a concept for training a complex Madaline using a sequence of trial adaptations. The

trials least disturbing to the network are to be performed first, in accord with the minimal

disturbance principle. This idea is presented by the author in greater detail than previously

published by other researchers in the last section of this chapter. Though more detailed,

the ideas presented there follow directly from previous work and the author claims no

contribution for them.

The author has taken the ideas left behind by the early researchers and made them work.

In formulating MRII, some changes to the minimal disturbance principle were required.

These changes are detailed in Chapter 3 and are the author's contributions. Real neural

networks need to be built in circuitry. This requirement molded the choices of which trial

adaptations to perform. Minimal disturbance also needed modification to insure all units

shared responsibility for arriving at a network solution. This was implemented by the author

as "usage" in the MRII algorithm. After discovering the need for and implementing usage,

the author discovered a similar idea had been proposed by another. This minor contribution

by the author appears to be independent but not original. The author's experimental results

with the algorithm are offered as a contribution as well as the several heuristics presented

for using the algorithm.

In working with MRII, the author discovered a failure mode of the algorithm. This

mode prevents the algorithm from coming to a solution even when a known solution exists.

This mode takes on the form of a limit cycle and is detailed in Chapter 5. The author

presents this as a contribution since an understanding of this phenomenon is essential to

improving the algorithm. An attempt to improve MRII by finding an escape to the failure

mode led the author to his second major contribution.

The sensitivity of the input/output response of Madalines to changes in the weights of

the system as well as to errors in the inputs to the system were analyzed. Approximations

were made to reduce the analytic results to useful form. These approximations were verified

for accuracy by experiment. The result is a useful and relatively easy to use set of equations

that accurately predict the sensitivity of "random" Madalines. These results should be a

worst case situation for Madalines that have been trained. The results should also be a

useful tool for further research into improving the MRII algorithm.
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x 0 =+1 (bias input)
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Figure 1.1: The adaptive linear neuron, or Adaline.

1.2 The Adaline

The Adaline is an adaptive threshold logic unit and is depicted in Figure 1.1. The Adaline

performs a weighted sum of its inputs and makes a binary decision based on this sum.

The input to the Adaline has n variable components and compose what will be called

the input pattern. The input pattern along with the constant +1 bias input form the

(n + 1)-dimensional input vector R = [To = +l,z1 ,...,Xn]T. The input vector is the bias

augmented input pattern, a semantic distinction which will be followed throughout this

paper. The weighting vector is W = (wo, wi, ... , wn]T .The weighted sum, referred to as the

Adaline's analog sum or analog output, is the dot product of these two vectors, y = XT V.

The Adaline's binary output is the result of passing this analog sum through a threshold
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device, q = sgn(y), where sgn(.) is +1 for positive argument, and -1 otherwise.

The individual components of the input vector could be any real analog values but often

are restricted to being binary. Except as noted, the input component values will be either

+1 or -1 in this paper. There are two reasons for making this restriction. First, this will

be the case when an Adaline is receiving its inputs from the outputs of other Adalines.

Secondly, with this restriction on the inputs, the magnitude of the input vector, 19,, will

be a constant v'7+T1. This will simplify the mathematical analysis to be presented.

The weights axe allowed to be continuous real valued numbers. From Figure 1.1 it is

noted that these weights are adjustable by an adaptive algorithm. The actual hardware

implementation of adjustable analog valued weights will not be specifically addressed in

this paper. This issue has been addressed in the past and resulted in the invention of a

device called a memistor [2]. Solid state implementations of adjustable weights are the

focus of much current research. It will be assumed here that such weights are available for

the eventual hardware realization of neural networks. The issue of how close these weights

have to be to their nominal values will be addressed later.

The Adaline is capable of making a binary decision based upon its inputs. What is

the nature of this decision making capability? This can be determined by examining the

Adaline's governing equation at its decision threshold, that is, when the analog sum y is

zero. For the case of an Adaline with two variable inputs this equation is:

Y = XT W- = WO + XlWl + X2W2 = 0.

This can be rewritten as:
Wl WO

X2 = -- X1 - -•
W2 W2

This is a straight line in the X1 -x 2 input space with a slope -W l /W 2 and X2-intercept of

-Wo/W2. An example plot of this equation is shown in Figure 1.2. The inputs to the right

of the separating line cause the analog sum to be positive, resulting in a +1 decision by the

Adaline. To the left of the line, inputs result in a -1 decision. The Adaline thus performs a

mapping from its multi-dimensional input space to its one-dimensional binary output space.

The input/output mapping effected by this example Adaline is represented by:

(+1,+1) +1

(+1,-i) +- +1 (1.1)

(-1,-i) +1
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X2  w2 wf

w2  W(-1, +1) / (1,1)

Decision
Separating

Line

©X

Figure 1.2: Graph of Adaline decision separating line in input 2-space.

(-I,+1) *- -1

By adjusting the weights, the orientation of the line in Figure 1.2 can be changed as
well as which side of the line results in a positive decision. This then can cause a change

in the input/output mapping of the Adaline. Methods for adapting the weights of a single

Adaline to achieve a desired input/output mapping were developed in the early 1960's.

The method for changing the weights is represented by the "adaptive algorithm" block
in Figure 1.1. The algorithm has as inputs the desired response, d, for the pattern being

presented and the actual analog response of the Adaline. Mays [3] summarizes three adap-
tation procedures for the single Adaline. All three of these procedures will produce a set

of weights to provide the desired input/output mapping, if such weights exist, in a finite
number of adaptations. An example of an input/output mapping that cannot be achieved

by a single Adaline will be shown later.

Mays' formulation of the adaptation procedures included a concept called the deadzone.
In any hardware implementation of an Adaline, a real thresholding element will be used. If

the analog sum y is very close to zero, it is possible the thresholder could flip output states

in an erratic fashion due to noise. Manufacturing tolerances might also cause the actual
threshold to be different from zero. For these reasons it is desired that the magnitude of

the analog sum be greater than a deadzone value 6 > 0. The magnitude of the analog sum
is referred to as the confidence level. It is a measure of how sure the Adaline is about its
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decision. During training then, not only must the binary decision be correct, but it must

be made with a minimum confidence level equal to the deadzone.

All of the Adaline adaptation procedures can be summarized as follows. There exists

a set of patterns and associated desired responses that the Adaline is to learn. This set

is called the training set. Present a pattern and its associated desired response from the

training set to the Adaline. If the binary response is correct and the confidence level is

greater than the deadzone, go on to the next pattern. If the response is incorrect or not

confident enough, make a change in the weights. The weights will be changed by adding

or subtracting some portion of the input. The weight changing method for the modified

relaxation procedure is detailed here.

W(k + 1) = W*(k) for dX w(k) >6

- W(k) + n±dX[L - dx w(k)] for dxjvW(k) < 6 (1.2)

Here k is an adaptation counter so that V(k+1) are the weights after the kth adaptation. As

before, d is the desired binary response associated with the input vector ). The adaptation

constant, 77, must have value 0 < 77 < 2 to insure convergence. The deadzone can be

selected 0 < b < 1. The quantity L is called the adaptation level and is selected 6 < L.

The adaptation level can be thought of as a target confidence level when 77 = 1. To see

this, compute the resulting analog sum after adaptation by premultiplying both sides of

Equation 1.2 by X T . Remembering that y = XTV, and XTX = n + 1:

y(k + 1) = y(k) + rjd[L - dy(k))

= y(k)[1 - 771 + 77dL

= dL for 77 = 1.

After adaptation, the Adaline will provide the correct response with confidence equal to

the adaptation level when q = 1 is used in the modified relaxation scheme.

1.3 Early Madalines

There are some input/output mappings that a single Adaline cannot realize. The class

of functions that can be realized by a single Adaline are called linearly separable. From

Figure 1.2 it can be seen that inputs requiring plus decisions must be separable from those
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requiring a minus decision by a straight line. In higher dimensional input spaces this require-

ment generalizes to requiring the separation being done by a hyperplane. An input/output

mapping that is not linearly separable for the two variable input case is the exclusive-or

function represented by:

(+1,+1) -, -1

(-1,+1) - +1 (1.3)

(-1,-I) '-. -1

(+i,-i) +1

The number of binary functions of n variable inputs is 22". For n = 2, 14 of the 16

functions are linearly separable. While no general formula exists for determining how many

of the possible functions of n variables are linearly separable for general n, it is known that

the fraction becomes very small for even moderate values of n. For example, at n = 5 only

94,572 of the possible 4.3 x 109 binary functions are linearly separable [4]. Thus, the single

Adaline's ability to realize arbitrary input/output mappings in high dimension input spaces

is very limited.

To combat this limitation of the Adaline, Ridgway [4] used simple networks of Adalines

which were called Madalines. The form of Madaline investigated by Ridgway is shown in

Figure 1.3. It consists of a layer of Adalines whose outputs feed into a fixed logic element.

All of the Adalines receive the input vector YX as an input. The Madaline's response is taken

at the output of the fixed logic unit and is compared with the desired response associated

with a particular X during training.

Some of the fixed logic units used by Ridgway are the AND, OR and majority vote taker

elements. All of these logic units can be realized by an Adaline with fixed weights as shown

in Figure 1.4. The weights shown in this figure are not unique but do realize the required

logic function. Thus Ridgway's Madalines can be thought of as the simplest of 2-layer

feed-forward Adaline networks, the second layer being restricted to a single nonadaptive
Adalinc.

Ridgway developed a method for training Madalines of the type in Figure 1.3. Because

the logic element is fixed, it is possible to determine which Adaline(s) are contributing to

any output errors during training. This determination of which elements in a network are

contributing correctly to the networks overall output is commonly referred to as the credit
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,jAdaline

Input ~~Adaline LgcMdln

InputFie
Pattern Adaline Logic Output

Element Output

Figure 1.3: Structure of the Ridgway Madaline.

assignment problem.

Consider the case where the logic element is an OR. A multi-input OR element makes a

+1 decision whenever one or more of its inputs is +1. It makes a -1 decision only when all

of its inputs are -1. Suppose a pattern is presented and its desired response is -1 but the

Madaline's actual response is +1. All those Adalines with +1 outputs need to be adapted

to provide a minus response. These adaptations can be done using the methods outlined

by Mays. Suppose instead the desired response is +1 but the actual response is -1. This

means all of the Adalines are responding with -1. One or more of these Adalines need to
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Xo0= +1

X W 2=+I

1

x2

Xo0= +1

x W =+ wo +1.5?

w 1  = + 1 x 0 -+ l

X 2 0j MAJ

Figure 1.4: Implementation of the AND, OR and MAJority logic units using Adalines with
fixed weights.
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be adapted to respond with +1 to correct the Madaline's overall response. Ridgway's rule

says to adapt only one Adaline and to choose the one with the lowest confidence, that is,

the one whose analog sum is closest to zero. Of course, if the actual response is correct, no

changes need be made.

Ridgway's algorithm for training the Madaline of Figure 1.3 will be called Madaline

Rule I throughout this paper. It can be summarized as follows.

" Present a pattern to the Madaline. If the Madaline output and the desired response

match, go on to the next pattern. Make no adaptations.

" If an error occurs, use knowledge about the fixed logic device to determine which

Adaline(s) are contributing to the erroneous output. Select a minimum number of

these such that if their outputs reverse state, the Madaline will respond correctly. If

this minimum number does not include all of those contributing to the error condi-

tion, select those with the lowest confidence levels to be adapted. Use one of Mays'

procedures to adapt the selected Adaline(s) in such a way as to reverse their outputs.

(Note: Mays' procedures will not necessarily cause an Adaline to reverse state. The

Adaline's analog response will be changed in a direction to provide the new response.

Depending upon the adaptation constant, this change may not be large enough to

actually change the Adaline's binary response.) Go on to the next pattern.

" Repeat this procedure until all patterns are responded to correctly.

Ridgway also points out that the pattern presentation sequence should be random. He

found that cyclic presentation of the patterns could lead to cycles of adaptation. These

cycles would cause the weights of the entire Madaline to cycle, preventing convergence.

Adaptations are being performed to correct the weights for the pattern being presented

at that time. It is not obvious these weight changes will contribute correctly to a global

solution for the entire training set. Ridgway presents an argument for convergence of his

procedure. His argument is of a probabilistic nature. He shows that good corrections will

outnumber bad corrections on the average. Thus a global solution will be reached after

enough time, probably.

The exclusive-or problem represented in Equation 1.3 can be solved by the Ridgway

Madaline shown in Figure 1.5. Here the fixed logic element is the OR from Figure 1.4.

Figure 1.6 is a graphical depiction of how this network works. The outputs of the two

Adalines in Figure 1.5 have been labeled q, and q2. The Adalines map the input x, - X2
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Figure 1.5: Ridgway Madaline realization of the exclusive-or function.
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Figure 1.6: Graphical presentation of the Madaline of Figure 1.5. The Adalines map the
input space into an intermediate space separable by the OR unit.
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space to an intermediate q, - q2 space that the OR element can separate as required. This

mapping of the input space to an intermediate space that is then linearly separable is the

essence of how layered Adaline networks operate.

The exclusive-or function can be written in the Boolean algebra sum of products form

as:

Xl2 + X2

Figure 1.4 shows how to realize the AND function when the inputs are uncomplemented.

To realize a general Boolean product term, weight uncomplemented inputs by +1, comple-

mented inputs by -1, and set the threshold weight wo = -(n - ). This is how the weights

for the Adalines of Figure 1.5 were determined. Since any Boolean logic function can be
written in the sum of products form, it follows that the Ridgway Madaline with the OR

fixed logic unit has the capability of realizing it. It is only necessary to provide a sufficient

number of Adalines. Ridgway notes this number is as high as 2'-I for the n-input case.

1.4 Concept of Madaline Rule II - Minimal Disturbance

Madaline Rule II, or MRII, is a training algorithm for Madalines more complicated than

those of Ridgway's. The general Madaline will have multiple layers. Each layer will have an

arbitrary number of adaptive Adalines. Figure 1.7 shows an example of a 3-layer Madaline.

This work will present experimental results of training 2-layer Madalines with MRII. The

procedure generalizes to Madalines having more than two layers of Adalines, though no

results of training such Madalines will be presented.

Figure 1.7 introduces some terminology to describe the general Madaline. Let I be the

number of layers in the network. In the case of Figure 1.7, 1 = 3. To remain consistent
with previous notation, the input vector X will have n variable components plus a constant

bias component and will be the input to all the first-layer Adalines. Since the outputs of

the first-layer Adalines are the variable inputs of the second-layer Adalines, let ni be the

number of Adalines in the first layer. The outputs of the first-layer Adalines represent an

intermediate pattern in the input/output pattern mapping scheme done by the Madaline.

The current literature often refers to this pattern as being "hidden." Therefore, let 111 =

0= +1,hl,.. . ,h] T be the input vector to the second-layer Adalines. The constant

bias input to the second layer is not pictured and is assumed to be provided internally to

the Adalines as in the general Adaline of Figure 1.1. Similarly, IH2 with n2 variable inputs
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Figure 1.7: A three layer example of the general Madaline

plus a constant bias input will be the input vector to the third layer. The final layer of

Adalines will be called the output layer as the response of these Adalines will constitute

the Madaline's response. The desired and actual responses will from now on be considered

vectors. The actual output vector will be d = [or,... ,o 1 T . The desired response vector

will be designated 1. The components of these vectors will be called bits, being the actual

or desired binary response for a particular output-layer Adaline. The configuration of a

particular Madaline will be referred to as an nj-feed-n 2-...- feed-n network with n inputs.

Thus, for X in Figure 1.7 having 6 variable components, the network will be called a 6-feed-

6-feed-2 Madaline with 6 inputs.

The credit assignment task for the general Madaline becomes much more complicated

than for the Ridgway Madaline. Suppose a Madaline has three output Adalines and for a

particular input, only one of the output Adalines' responses agrees with the corresponding

desired response. IHow much is the output of any particular Adaline in the first layer helping

or hurting the overall response of the network? One way to check is to reverse the output

of an Adaline and let this change propagate through the network. In some instances the

Madaline's output may not change at all if a given first-layer Adaline's response changes.



CHAPTER 1. INTRODUCTION 14

For other input patterns, changes in a first-layer Adaline's response may cause more of the

output Adalines' responses to be correct, other times fewer may be correct, and still other

times outputs will change but no net gain or loss of correct responses will occur. Faced with

all these possibilities, how does one know which Adalines in a network need to be changed

when errors occur during training? The adaptation techniques for the single Adaline and

the Ridgway Madaline provide some insight.

All of the algorithms examined so far make no changes to the network if the current

response matches the desired response (assuming no deadzone criterion is being used).
When changes need to be made in the Ridgway Madaline, the fewest number of Adalines

are changed and those of lowest confidence are selected. This is because the weights of

the low confidence Adalines need to be changed least to change their outputs. To see this,

suppose a generic weight update rule is used:

W(k + 1) = WC + W

Premultiplying both sides by gT,

y(k + 1) = y(k) + gT(SW)

so that,

Ay= y(k + 1) - y(k)

= I9lAWI coso

where 0 is the angle between 9 and AWi. The change in the Adaline's analog response

is greatest for a given magnitude of weight change when AV is selected aligned with 9.

This is the type of weight update correction used by Mays' methods. Thus, the Adaline

and Madaline procedures seen so far allow the current pattern presented to the system to

be accommodated with least overall disturbance to the system. This is important because

adaptations are being made based only upon the current input. By changing the overall

system as little as possible, there is less likelihood of disturbing the response for other

patterns in the training set.

This procedure of making corrections only when errors occur, and then making cor-

rections that are least disturbing to the overall system is called the minimal disturbance
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principle. This idea can be used to formulate a strategy for training the general multi-layer,

multiple output Madaline.

The procedure is as follows. Present a pattern from the training set to the network.

Count how many of the output Adalines' responses do not match their desired responses.

This number is actually the Hamming distance between the desired response vector and the

actual output vector. Look now at the least confident Adaline in the first layer. Perform a

trial adaptation by reversing the response of this Adaline. That is, if the selected Adaline

had been responding +1, cause it to now respond -1 or vice versa. This change will

propagate through the network and perhaps change the output Adalines' responses. If the

Hamming distance between the new actual response and the desired response is reduced,

accept the trial adaptation. If the number of errors is not reduced, return the trial adapted

Adaline to its previous state. If errors in the output remain, perform a trial adaptation

on the next least confident Adaline of the first layer. Again, accept or reject this trial

adaptation depending upon whether the number of output errors are reduced. Continue in

this fashion until all output Adalines respond correctly, or all single Adaline trial adaptations

have been tried. If errors remain at this point, try trial adapting the first layer Adalines two

at a time, beginning with the pair which are least confident. The criterion for acceptance

of the trial is the same as before. If pairwise trials axe exhausted, try trial adaptations

involving three Adalines at a time, then four at a time, etc. until the output errors are zero.

If all possible trial adaptations are exhausted without reducing the errors to zero, repeat

the procedure using the Adalines of the second layer, then the third layer, etc. until one

finally reaches the output layer. The output layer of course can be corrected to give the

desired outputs by adapting each erroneous Adaline to give the correct response.

The basic philosophy is to give responsibility for corrections to those Adalines which

can most easily assume it. That is, make the response for the current input correct with

least overall change to the weights in the network. The details of how to perform trial

adaptations, how confident an Adaline should be after it is adapted, how to choose the

ordering of possible pairwise trial adaptations, etc. are deferred to Chapter 3, and are the

author's specific contributions. The general procedure presented above is a specific way to

implement a concept for adapting the general MadaJine proposed by Widrow in 1962 [5].



Chapter 2

Mathematical Concepts

This chapter will cover some mathematical background that will be needed to analyze

Madaline networks. The single Adaline is not a particularly simple element to analyze. The

input and weight vectors introduced so far can have high dimensionality. The thresholding

element of the Adaline introduces nonlinearity and discontinuity to complicate any analysis.

Graphical techniques fail whenever the dimensionality exceeds two or three even for the

single Adaline. Attempting graphical analysis for networks of even low dimensionality is

virtually impossible.

The concepts of multi-dimensional geometry will provide the needed tools for analy-

sis. Fortunately, many of the needed concepts follow intuitively from the two and three

dimensional cases. Indeed, representations of the multi-dimensional situation can often be

presented in terms of three dimensional drawings.

Analysis is often aided by making appropriate approximations. One such approximation

which will be very useful is the Hoff hypersphere approximation [6].

2.1 Multi-Dimensional Geometry

The concept of angle between two vectors extends to higher dimension spaces through the

dot product relation,

VT U=IVI I CoO.

Here V and 1U are just two generic vectors in n-space. Two such vectors define a two

dimensional plane and 0 is the smaller positive angle between them in this plane, 0 < 0 <
180 degrees. Two vectors are normal to each other when their dot product is zero.

16
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The equation that describes the decision separating surface for an Adaline is a dot

product relation, X W = ,X = 0. The vectors axe located in (n + 1)-space. The equation

specifies a normality condition. The symmetry of the dot product allows two perspectives

in understanding the Adaline.

In the first perspective, consider the weight vector to be fixed in the input vector space.

The decision surface is a hyperplane through the origin and perpendicular to the weight

vector. This hyperplane is itself an n-dimensional space. It divides the input vector space in

half. Those input vectors lying on the same side of this hyperplane as the weight vector will

have a positive dot product and result in a +1 decision by the Adaline. Those input vectors

on the opposite side of the hyperplane result in -1 decisions. This then is the perspective

that the weight vector defines a division of the input space into decision regions.

The other perspective is to assume an input vector has been chosen in the weight space.

An input vector will have associated with it a desired response. The hyperplane through the

origin, perpendicular to the input vector will divide weight space in half. Weight vectors on

only one side of this hyperplane will provide the correct desired response for this particular

input vector. If now a second input vector is considered, its desired response will also define
a half-space where the weight vector must lie to provide a correct response. To satisfy both

input vectors, the weight vector must lie in the intersection of these two half-spaces. To

solve an entire training set, the weight vector must lie in the intersection of the half-spaces

defined by each input vector and its associated desired response. This intersection will be

a convex cone emanating from the origin. Any weight vector lying in this cone will be a

solution vector for the given training set. If the intersection of the half-spaces happens to

be empty, the training set defines a not linearly separable function. There is no weight

vector for the single Adaline that can solve this training set. This second perspective then

is that of the input vectors defining a solution region for the weight vector.

At this point the reader may become concerned about some apparent contradictions.

Above it was said the decision separating hyperplane passed through the origin. In all of the

graphs shown in Chapter 1 though, none of the decision separating lines passed through the

origin. This is because the graphs of Chapter 1 were drawn in the input pattern space not

the input vector space. The relation between these two spaces is the following. The input
pattern space is n-dimensional, having n variable components. The input vector space has

an extra component x0. This component however is not truly variable as it is constant

at a value +1. The input pattern space lies in the hyperplane, x0 = +1, of the input
vector space. In the case of two-dimensional pattern spaces, as presented in Chapter 1, the
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situation is easily visualized. Consider all possible binary triples (x0, x1, x2), xi E {-1, +1}.
There are 8 of them. They are the vertices of a cube centered on the origin with edge length

2. With x0 fixed as +1, four of them are actual allowable patterns and these are located on

a face of the cube. This face lies in a two-dimensional plane. The plane perpendicular to the
weight vector and passing through the origin intersects the plane containing the patterns

in a line. This line does not necessarily pass through the origin of the pattern plane and in

general will not.

From the above it is seen there is an option to do analysis in either the n-dimensional

pattern space or the (n + 1)-dimensional input vector space. There are advantages and

disadvantages to both approaches.

The primary advantage to working in the (n + 1)-dimensional space is that the hyper-

planes perpendicular to the weight and input vectors all pass through the origin. As will

be seen in Chapter 6, this simplifies analysis when one is concerned with deviations of the
weights and inputs from nominal values. These deviations will take the form of angular

deflections from the nominal direction. The disadvantage to doing analysis in this space
is that the distribution of possible weight vectors and allowable pattern vectors is not the

same. The weight vector can assume any direction in this space. The input vectors however
are constrained to lie in the x0 = +1 hyperplane. The input vectors have an orientation

in the positive x0 direction. This orientation destroys spherical symmetry for the input
vectors. A consequence is the fact that only half of the possible binary vectors in this space

are true patterns, those having x0 = -1 being unadmissible.

In the n-dimensional pattern space, all binary component vectors are true patterns and

they have spherical symmetry in the space. The bias weight, wo, is no longer considered

part of the weight vector. This changes the equation for the decision separating hyperplane

to XTW = -wo. Here a notation change is used to distinguish weight and input patterns
without bias components from those that do. In the n-dimensional weight space, this is

an equation of a hyperplane perpendicular to W but offset from the origin by a distance

wol/I WI. This offset complicates analysis. The decision separation now becomes dependent
on the magnitude of the reduced dimension weight pattern instead of just its direction. Any

change in the weights must then be resolved into changes in direction and offset from the

origin.

The major analytical results presented in this paper deal with how the input/output

mapping of a Madaline change when the weights are disturbed from their nominal values.

The (n + 1)-dimensional space is much easier to use for this analysis.
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2.2 Hoff Hypersphere Approximation

Hoff [61 is responsible for the very powerful hypersphere approximation that allowed most of

the analytical results on Adalines and Madalines to date to be derived. Hoff formulated this

approximation in the n-dimensional pattern space. This section will explain the hypersphere

approximation and introduce some more multi-dimensional geometry concepts.

In three dimensional pattern space it is easy to visualize the locations of all the input
patterns as being the vertices of a cube. In higher dimensions, these patterns are found

at the vertices of a hypercube. The input patterns all have the same magnitude, "-.

The hypercube can be inscribed then in a hypersphere of radius V1/. The vertices of a
hypercube have a regular arrangement symmetric about the origin. Hoff postulated that as

n gets large, one could say the input patterns are uniformly distributed on the surface of the

hypersphere. This immerses the case of binary input patterns into the continuous analog
patterns case. He showed that this was a valid assumption in his doctoral dissertation.

The power of this assumption allows one to use probabilistic methods to analyze the
Adaline. The probability of an input pattern lying in a particular region of space could be
computed as the ratio of the area of the region on the hypersphere to the area of the whole

hypersphere. Thus, instead of performing summations over discrete points, integrals over

regions of the hypersphere could be used in many of the analyses that needed to be done.

One use of these techniques was to prove that the capacity of an Adaline to store random

patterns was equal to twice the number of weights in it [71.

Glanz [8] applied the hypersphere approximation to the (n+ 1)-dimensional input vector
space. He argued that since the xo component could only take on half the values it could

before, the hypersphere approximation would apply to half the hypersphere. The input

vectors could be thought of as being uniformly distributed on the hemihypersphere in the

positive x0 half-space.

Most previous analyses could be performed assuming a unit hypersphere. In these
analyses, only the direction of the input and weight vectors was important. In the analytical

results to be presented in this paper, the magnitudes of vectors will be important and care

must be taken to work with the proper sized hypersphere.

At this a point a few facts about hyperspheres will be introduced. Further information

can be found in Kendall [9] or Sommerville [10].

* Strictly speaking the area of a hypersphere should be called its surface content but the

term area will usually be used. The area of a hypersphere of radius r in n-dimensional
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space is given by:

A,, = K,,r n - ' (2.1)

where,

2-(n/2)

The expression for K,, can be written in terms of factorials instead of the gamma

function if distinction is made for n even and odd:

Kn = (r-)! for n = 2m (2.2)

22 m+l~mmn!
- (2m)! for n = 2m + 1 (2.3)

* The intersection of a hyperplane and a hypersphere in n-space is a hypersphere in

(n - 1)-space. For n = 3, this says a plane intersects a sphere in a circle. The center
of the reduced dimension hypersphere is the projection of the center of the n-sphere

onto the intersecting hyperplane.

" The differential element of area dA,,, on a hypersphere of radius r as a function of

one polar angle 4 is given by:

dAn = K,- 1 rn - 1 sinn-2 0 db (2.4)

This can be understood by realizing that a particular value of 4 defines a n - 1
dimension hypersphere of rac'us r sin 4'. The differential area element is the surface

content of this reduced dimension hypersphere multiplied by a thickness r d4. A

representation of this in three dimensions is shown in Figure 2.1.

" The hyperplane perpendicular to a vector emanating from the origin will divide a
hypersphere centered on the origin into two hemihyperspheres. In similar fashion, a
second vector will define a hyperplane that bisects the hypersphere. The surface con-
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/... ....... ..

Figure 2.1: The differential area element of a hypersphere as a function of the polar angle

4~.

tained between specific sides of two such hyperplanes is called a lune (see Figure 2.2).

If the angle between the two vectors is 0, the surface content of the lune is given by:

0
Area of lune = -A, (2.5)

21r
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Figure 2.2: A lune of angle 0 formed by two bisecting hyperplanes.



Chapter 3

Details of Madaline Rule II

This chapter will present the actual details of how MRII works. The reader will be able to

write computer simulation code after reading the chapter.

The chapter will begin by discussing some desirable features of a neural network training

algorithm. These desirable features required modifying the minimal disturbance principle

to develop a practical implementation. The MRII algorithm was developed empirically. As

the algorithm evolved it was necessary to introduce a concept called "usage" that further

modified the minimal disturbance principal. The usage concept, why it was needed, and its

implementation will be covered.

3.1 Desired Features for a Training Algorithm

A neural network is a collection of relatively simple processing elements. They are con-

nected together in such a way that the collection exhibits computational capabilities that a

single element cannot perform. The specific computation the network performs is "trained

in" by presenting a collection of sample inputs and desired responses to the network. It

is reasonable to assume the network can be trained off-line. That is, the training data is

available for presentation as many times as necessary via some external storage and pre-

sentation system. It will be assumed that training can take a relatively long but reasonable

time and this amount of time is not a critical factor. Once trained, the neural network's

utility is realized by being able to respond almost instantaneously to new inputs presented

to it. This speed is due to the fact that the computation being performed is distributed

among all the processing elements. In a layered feed-forward Madaline, the response time

23
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will be roughly the number of layers multiplied by the time for a single Adaline to perform

its weighted sum and thresholding operation.

The hardware implementation of neural networks must contend with the problem of con-

nectivity. The neural net relies on a high degree of connectivity to perform. The realization

of the high fan-in and fan-out needed for neural networks is a definite hardware challenge.

The issue to be made here is that the training algorithm not exacerbate this problem. The

training algorithm must be implemented with a minimum of added connections.

For MRII, there will be a need for a master controller to direct the trial adaptations and

decide which are accepted and rejected. Communications require hardware and time, two

quantities to be minimized in a training implementation. Therefore, the controller should

operate with a minimum of communication. Information about a specific Adaline's weight

values or analog sum should not be needed by other units or the master controller.

While it has been assumed that training time is not a prime consideration, this time

has to be reasonable. The question of how training time grows with network size cannot be

completely ignored. Any training algorithm that requires an exponential or combinatoric

increase of training time as the size of the network increases will probably not be acceptable.

The next section will show how to implement the concepts of minimal disturbance with

the above considerations in mind.

3.2 Implementing MRII

This section will present a block diagram implementation of MRII. The purpose here is to

present the implementation at a high level of abstraction, not to present a wiring diagram.

The function of each block in the diagram will be explained but its hardware realization

will not be addressed.

The basic scheme of MRII was presented in Chapter 1. Its implementation requires

several things. The first is the ability to perform trial adaptations by layers. The first

layer being trial adapted first and the final layer adapted only if all output errors could not

be corrected by the previous layers. Within a layer there must be the ability to involve

different numbers of Adalines in the trials. First, trials involving only a single Adaline will

be done. Then, if necessary, pairwise trials or trials involving two Adalines at a time will

be done. These will be followed by threewise, fourwise, etc., trials. Finally, it is desired

to trial adapt the Adalines in order of increasing confidence. Those Adalines with analog

responses closest to zero are to be trial adapted before the more confident ones.
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Figure 3.1: Block diagram implementation of a Madaline trained by MRII.

Figure 3.1 shows a Madaline at the highest level of abstraction. There is a master

controller that communicates with each layer of Adalines in the network by means of a two-

way "party line." The master controller also controls an "adjust" signal generator for each

layer of the Madaline except the output layer. Figure 3.2 shows the structure of a single

layer within the network. The party line and adjust signal line are connected in parallel to

each Adaline of the layer.

The party line provides the communications link for command and control during trial

adaptations. Communication on this party line will be structured so that at most one

element is transmitting at a time. The important aspect of this party line is that if an

Adaline transmits on it, all other Adalines receive this transmission, not just the master

controller. This is why it is called a party line.

The minimal disturbance principle requires that trial adaptations begin with the least

confident Adalines first. This implies that the Adalines on a particular layer will need to

be sorted by the value of their analog response. To do this without actually communicating

analog values around the network is the purpose of the adjust signal.

Figure 3.3 shows a block diagram of the Adalines needed to implement MRII. These
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Figure 3.2: Structure of a single layer within the network of Figure 3.1.
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Figure 3.3: Block diagram of the Adalines for Figure 3.2.

Adalines use the adjust signal to modify their analog responses during trial adapting. The

Adalines local controller controls an internal switch. This switch selects either the true

analog response or an adjusted analog response as input to the thresholder. The polarity

adjuster senses the polarity of the true analog response. It sets the polarity of the adjust

signal to be opposite the polarity of the true analog response. As the adjust signal increases,

it will drive down the apparent confidence of the Adaline. If the magnitude of the adjust

signal gets large enough, the sign of the adjusted analog response will be opposite that of

the true analog response. This will cause the binary response to flip or reverse from its

previous output.

When the master controller wants to trial adapt a layer it will transmit on the layer's

party line that it is to begin trial adaptation. The local controller of each Adaline on the

adapting layer will throw its internal switch so that its output is modified by the adjust

signal. The adjust signal is initially zero. The master controller then slowly increases the
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adjust signal. Each Adaline on the layer being adapted adds the adjust signal with proper

polarity to its analog response in a way to reduce the apparent confidence of the Adaline. As

the adjust signal increases, the adjusted analog response will eventually cross zero and take

on a sign opposite to the true analog response. The binary response will reverse and the

Adaline is said to be trial adapted. As the adjust signal increases, the reversal of outputs

will occur in order from least confident Adaline to most confident Adaline. At the time of

reversal, the Adaline transmits on the party line that it has reversed.

If trials involving one Adaline at a time axe being performed, the master controller will

stop increasing the adjust signal as soon as the first Adaline reverses. It will wait a sufficient

time for changes to propagate through the net, and then check the actual response versus

the desired response for improvement. If improvement occurs, the master controller will

transmit an "adapt" command. The Adaline which was trial adapted will then change its

weights to provide its new binary response. This weight change will be done by the modified

relaxation rule. The parameters for the weight update will be detailed later but will be

chosen such that the weights will change by a sufficient amount to actually reverse the

Adaline's output. If the Hamming distance between the desired and actual responses had

not decreased, the master controller would transmit a "reset" command. The trial adapted

Adaline would then throw its internal switch to disconnect its output from influence by

the adjust signal. The Madaline will return to its original state before trial adaptation.

The master controller would then begin increasing the adjust signal until the next least

confident Adaline reverses its output, etc.

If trials involving two Adalines at a time were being performed, the master controller

would increase the adjust signal until a second Adaline transmits that it has reversed state.

The master controller would then check the output performance. Again, if an improvement

occurred, the master controller would transmit the adapt command. Now both of the

Adalines participating in the trial would change their weights. If output performance had

not improved, the master controller transmits reset. Now only the first Adaline of the pair

that reversed its outputs disconnects from the adjust signal. This is why the Adalines need

to be able to hear each other on the party line. They have to be able to keep track of their

position in the sequence of output reversals. Only in this way can they know when a reset

command applies to them. After the first Adaline resets, the master controller increases

the adjust signal until another Adaline reverses output. At this point the pair of Adalines

participating in the trial adaptation are the second and third least confident of those when

the trial began. If no improvement in output performance is obtained, the reset command is
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given and the second least confident Adaline disconnects from the adjust signal. The adjust

signal then increases until the third and fourth least confident Adalines are trial adapted,

etc.

Three at a time trial adaptations are handled similarly. The adjust signal is increased

until three Adalines reverse output. Then the output performance is checked. If the trial

is rejected, the first Adaline of the three that reversed outputs disconnects from the adjust

signal.

Any time a trial adaptation is accepted, the master controller will restart the adaptation

procedure with trials involving one Adaline at a time. This is done because after an Adaline

adapts its weights, its new analog response will cause it to have a conhdence different from
what it had before. Also, since the response of the layer has changed, some of the trial

adaptations that were previously rejected may now be accepted. This may cause what really

would have been an accepted pairwise adaptation to masquerade as two accepted single

adaptations. In similar fashion, a three at a time adaptation may be accepted as a single

and a pair. Experience simulating the algorithm shows that it is rarely necessary to consider

more than three at a time trial adaptations when the layer has less than twenty Adalines.

The number of accepted single trial adaptations outnumbers the accepted pairwise trials by

a factor of ten. The accepted threewise trials are about one-fourth the number of pairwise

acceptances. Due to this diminishing acceptance rate, performing trials involving more than

three Adalines at a time is not really worth the time it takes to do them.

With this implementation, the least confident and third least confident Adalines will

not be considered as a pair during pairwise trial adaptation. Thus, sorn, possibly good trial

adaptations will not be considered. The sum of the confidences of the first and third least

confident Adalines will be less than that of the second and third least confident. Based on

minimal disturbance only, the trial adaptation involving the first and third least confident

Adalines should be considered first. The implementation modifies the minimal disturbance

principle to tradeoff for practicality. This scheme insures the training time will not grow at

a combinatoric rate as the number of Adalines on a layer increases. It would if all possible

combinations of pairwise, three-wise, four-wise, etc., trial adaptations were considered. A

more complicated implementation would also be needed to consider these other trials.

As mentioned earlier, the weights of an Adaline will be adapted using the modified

relaxation method of Equation 1.2. It was shown in Chapter 1 that if r is chosen as 1, the

confidence of the Adaline after adaptation would be equal to the adaptation level, L. The

Adaline would also be responding with its new desired response. Experience indicates that
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= 1 and L = .2 are good parameters to use. The desired response d is either +1 or -1,

the sign being the same as the current trial output of the Adaline. A deadzone value of zero

will be used. This means that only those Adalines actually accepted in trial adaptations

will have their weights changed. There could be Adalines of very low confidence that are

not accepted during the trials. These Adalines will not be adapted to provide a minimum

confidence. (Note: A nonzero deadzone could be used. The simulation results presented in

this paper had a zero deadzone. To use a nonzero deadzone, the master controller would

send a special command to the Adalines of a layer after the trials were completed. The

low confidence Adalines would then adjust their weights to provide their current binary

response with confidence equal to the deadzone. Do this by using q = 1 and L = 6 in

Equation 1.2.)

The minimal disturbance principle demands one final consideration. The confidence

levels of some Adalines on a layer may be quite high for a given input pattern. If such

an Adaline is adapted, it will require a great change in its weight vector. The minimal

disturbance principle suggests it may be better to let the next layer assume responsibility for

correcting output errors than to make large weight changes on an earlier layer. Experience

with the algorithm confirms this idea.

There are two ways to limit the number of Adalines considered for trial adaptation

on a layer. One way is to set a maximum value for the adjust signal. This will prevent

Adalines above some threshold confidence from participating in trial adaptations. A second

implementation is to allow only a set fraction of the total number of Adalines on a layer

be trial adapted. Suppose a layer had ten Adalines. One might allow only the five least

confident ones to participate in trials. This would set the fraction at one-half.

If a nonzero deadzone is used, the second approach is preferable. It is difficult to know

ahead of time how large the weight vectors and, correspondingly, the confidence levels are

going to have to be to insure a minimum confidence over a training set. This complicates

the choice of a maximum adjust signal level. Experience indicates the fixed fraction idea

provides an algorithm that works better over a larger set of problems. The value used in

the simulations presented in this paper was one-half of the Adalines on a layer plus one if

there were an even number of Adalines, and the big half if there were an odd number.
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3.3 Usage

The implementation of MRII detailed in the previous section was simulated on a computer.

The training often failed to converge to a solution even on training sets for which there were

known solutions. It was found that the failures were typified by one particular Adaline

always being accepted during trial adaptations. This Adaline will be called the "hinge"

Adaline since the response of the Madaline as a whole was dependent on how this Adaline

was adapted.

The training set would end up being divided into three subsets. The patterns in one

subset would be responded to correctly independent of the response of the hinge Adaline.

Patterns in the second subset would be responded to correctly when the hinge Adaline

responded +1 while the third subset needed the hinge Adaline to respond -1 to provide

a correct response. The hinge Adaline was the low confidence Adaline for patterns from

either the second or third subsets. It also had the power to solve the Madaline's response

whenever patterns from either set caused output errors. Thus, the hinge Adaline was

always trial adapted first and always accepted for adaptation whenever an error occurred.

Unfortunately, the second and third subsets were not linearly separable from each other.

The dynamics of the algorithm are then exactly those of a single Adaline trying to separate

a not linearly separable set.

This type of behavior was also noted to occur with the Ridgway Madaline. Glanz [8]

reports that Hoff suggested using "activity levels" to force Adalines not being adapted to be

adapted. Prior to discovering these notes by Glanz, this author came up with the concept

of "usage." Usage is a way to modify the confidence levels of the Adalines.

A way to break the cycle of always adapting the hinge Adaline is to make its confidence

not be the lowest when trial adaptations occur. This forces another Adaline to be trial

adapted before the hinge Adaline. In this way, the rest of the Adalines on the layer can be

forced to help the hinge Adaline separate the two problematic subsets. Usage modifies the

minimal disturbance principle by requiring a spreading out of responsibility among all the

Adalines.

To implement the usage concept, pass the analog response through a variable gain

amplifier. Set the gain to a value proportional to the number of times that particular

Adaline has been adapted. This can be done by the Adaline's local controller. A usage

modified Adaline is shown in Figure 3.4.

Deciding exactly how to set the gain of the usage amplifier remains the most empirical
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Figure 3.4: An Adaline modified to implement the usage concept.

part of the MRII algorithm. A formula which has worked well in simulations is:

adaptation countgain =1+ M L*MULT * Nr

where N is the number of patterns in the training set and "MULT" is a multiplier value.

Experience indicates MULT = 5 is a good choice. The idea here is to not let the usage

gain get too laxge before the network really gets into a cycle. The next chapter shows some

results of simulations using MRII.



Chapter 4

Simulation Results

This chapter will present the results of using MRII to train various Madaline networks.

Madalines were used to solve several problems including an associative memory problem

and an edge detection problem. An investigation of how well MRIi could train networks to

learn arbitrary input/output mappings was also conducted. This latter investigation also

included a study of the generalizing properties of MRII. Results of these experiments will

be presented following a presentation of the performance measures used to evaluate the

algorithm.

4.1 Performance Measures

To evaluate a learning scheme there needs to be established some set of criteria by which

to measure the performance. Of primary concern is whether the algorithm converges to a

solution. If it converges, how fast does it converge. If it doesn't converge, does it in some

way get close to a solution. In either case it is often desirable to know how well the resulting

trained network responds to inputs that were not in the training set. This is the issue of

generalization. This section will define the measures used to quantify the answers to these

questions.

Before actually addressing the measures used, a few comments on the experimental

technique used for the simulations is in order. The Madaline network begins training with

some set of weight values already set. The simulations randomized these initial weight

values. Each individual weight was selected independently from a distribution that was

uniform on the interval (-1, +1). The training patterns were presented in random order.

33
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At each new presentation, each pattern was equally likely of being the one presented. The

selection process then was like pulling one pattern out of a grab bag containing all the

patterns and returning the pattern to the bag after each presentation. At regular intervals

during training, all of the patterns would be presented to the network one after another

to check how many of them were being responded to correctly. These "checkpoints" allow

measuring the network's global performance over the entire training set. No adaptations

are performed during these performance checks. If the response to all patterns was correct,

then convergence was said to occur. Finally, the results are presented as the average of

an ensemble of training attempts, each attempt beginning with a new set of randomized

weights.

The first measure to decide upon is one that measures how long it takes the algorithm

to reach a solution. For a Madaline implemented in hardware, the p.ocess of presenting

a pattern and getting a response will take almost no time. If the response is correct the

network can immediately go on to another pattern. If the response is incorrect though,

the network will go through a series of trial adaptations until the output is corrected. The

trial adaptation procedure will take up the majority of the training time. As convergence is

reached, most pattern presentations will require no adaptations. Thus, the reasonable mea-

sure of training time will be the number of pattern presentations that require adaptations

be performed. This will be a good measure of the time an actual hardware implementation

would require for training. Furthermore, the network only learns from its mistakes. A

pattern presentation that requires adaptations be made can be thought of as a learning

opportunity. By measuring network performance against the number of learning opportu-

nities, a measure of the algorithm's efficiency as it proceeds towards convergence can be

obtained.

The Madalines that are of most interest are those with more than one output bit.

Ultimately, convergence will require that all bits of all output patterns be correct. In

measuring performance prior to convergence, one has two choices. One can count the

number of patterns whose bit responses are all correct or one could count the number of

bits that are correct. One would expect that the number of patterns that have a completely

correct response would not increase until almost all the bits are correct. A distinction

will be made then between pattern rates and bit rates. Since the problems which will

be presented later have different size networks and different size training sets, these rates

will be normalized by presenting them as percentages. The learning curves that will be

presented will plot a training rate versus the number of pattern presentations that required



CHAPTER 4. SIMULATION RESULTS 35

adaptations. A -'bit learalg curve" will present the percentage of the total output bits

for the training set that are correct as a function of the number of adaptation causing

presentations. Similarly, pattern learning curves will plot the percentage of patterns whose

response is completely correct versus the learning opportunities.

It is a fact that MRII does not always arrive at a solution. Sometimes it may take a very

long time for a solution to occur from a particular set of initial weights. At other times the

algorithm gets trapped in a limit cycle and will not proceed to a solution. In performing

the simulations in the following sections, the problem to be solved was attempted many

times starting from new initial weights each time. It was necessary to set some arbitrary

limit to the number of patterns requiring adaptation that would be trained on before the

particular attempt was abandoned. If convergence had not occurred by the time this limit

was reached it did not necessarily mean that convergence would not have occurred if training

had continued. This needs to be remembered when a convergence rate is reported. The
convergence rate represents the number of training attempts that reached a solution within

some limit of training time.

Those training attempts that converge can be used to generate learning curves that

typify the algorithm's performance on that particular problem. What should be done

though for the cases of nonconvergence? For these cases one might want to know how

close to a solution the algorithm came. With some extra circuitry, it would be possible

to build Madalines that could save their weights at intermediate stages during training.

The learning exhibited by MRII is not a monotonic process. This is due to the fact weight
changes are made based only upon the particular pattern being presented rather than

on a global assessment of the effect of weight changes on the entire training set. Some
adaptations will cause regression of global performance. With the ability to save weights at

intermediate stages this effect can be minimized. One becomes interested then in the best

performance exhibited at any stage of training. In the cases of nonconvergence, the average
best performance will be presented as a measure of how close to a solution the network

came.

4.2 An Associative Memory

An associative memory associates an input pattern with an output pattern. A need for
such an application arose in the adaptive descrambler portion of a translation invariant

pattern recognizer reported in Widrow, et al [11]. The basic structure of the system is
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shown in Figure 4.1. An retinal image containing a possibly translated figure is presented

to an invariance box. The invariance box outputs a pattern that is unique to the figure

presented and does not change when the figure is translated on the retina. The descrambler

associates this translation invariant representation of the figure with the original figure in a

standard position. The translation invariant input pattern then acts as a key that unlocks

the required desired response. Most associative memories have the ability to perform well

with incomplete keys or keys with errors in them. This was not expected of the application

here. The requirement then is for the descrambler to act as a simple lookup table.

The structure used for this application is a 25 input, 25-feed-25 Madaline. There were
36 patterns in the training set. Three different training sets were used, each representing

a different invariance box. The reason for making the descrambler adaptive is because

the exact form of the outputs from the invariance box is dependent on the particular

problem. The intent is to show the ability to associate patterns with different invariant

representations.

The average learning curves for patterns and bits are presented in Figure 4.2. The
pattern learning curve doesn't show an appreciable increase in performance until almost all

the bits are learned. This is because a pattern is not considered correct until all its bits are

correct.

The algorithm always reached convergence when training on this application. It also

reaches a solution in a reasonable amount of training, only needing to adapt on each pattern

about 15 times to insure convergence. The network is not being tasked heavily by this

example. While the capacity of layered feed-forward Madalines is not known, one can

suspect it exceeds 36 for the structure being trained. The example does show that MRII

is capable of training networks with a relatively large number of inputs and units on both

the first and output layers.

4.3 Edge Detector

Image analysis techniques often require extraction of certain features from a scene such

as edges. A Madaline that could be used as a component of an edge detection system
was simulated and trained using MRII. The problem is illustrated in Figure 4.3. The

Madaline receives its input from a linear array of pixel elements. The array has a horizontal

orientation. It is desired to detect the first "on" pixel scanning from left to right and output

its position by a binary code. The array has eight elements and the case of no pixels being
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Figure 4.1: Diagram of a translation invariant pattern recognition system. The adaptive
descrambler associates a translation invariant representation of a figure to its original rep-
resentation in standard position.
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Figure 4.2: Learning curves for patterns and bits for the adaptive descrambler associative
memory application. Average of training 100 nets. Data points are marked by "o".
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Figure 4.3: A component of an edge detector system. The Madaline outputs the position
of the first black pixel in a binary code.

on must be allowed for. This means there are nine possible outputs for the Madaline,

requiring four output Adalines to represent them. The minimum possible network then to

solve the problem is an 8 input, 4-feed-4 Madaline.

The training set consisted of all 256 possible sequences of "on" and "off" pixels repre-

sented as sequences of +ls and -is. Besides the minimal network, 8 input, 5-feed-4 and

6-feed-4 Madalines were also trained to solve the problem.

Table 4.1 lists the simulation results for the different size networks. One hundred nets

starting from differeiit initial conditions were trained for each size of network. Training was

terminated after presenting 2000 patterns requiring adaptation. The convergence rate and

average number of patterns adapted to reach convergence are listed for each architecture

trained. For those cases where convergence was not reached, the average best performance

of the network is listed. This best performance is the highest percentage of the total output

bits that were correct at any of the intermediate checkpoints.

When the algorithm failed to converge, usually all but a couple of input patterns were



CHAPTER 4. SIMULATION RESULTS 40

Edge Detector Performance
ave patterns ave best bit rate (M)

network size % convergence adapted to converge for non-converge
4-feed-4 52 545 99.524
5-feed-4 61 422 99.775
6-feed-4 89 282 99.849

Table 4.1: Performance for the edge detector problem. Averages are for training on 100
nets beginning at random initial weights.

learned correctly. These unlearned patterns usually only had about one output bit per pat-
tern in error. This is why the average best performance for bits even during nonconvergence
was so good. The network had arrived at a solution that satisfied all but a few output bits

out of the 1024 total. This failure to converge lead to an investigation of the algorithm

dynamics to find out why convergence did not occur. The next chapter presents an exam-

ple of a failure mode identified during that investigation. All failures of the algorithm to

converge on this edge detector problem were of this type.

Further examination of the simulation results reveals a not unexpected result. There
was a noticeable trend as the trained net became larger in size than absolutely necessary to

solve the problem presented. The convergence rate went up and training time, as measured

by the number of patterns adapted to converge, went down.

The use of a network larger than the minimum required will be referred to as "overar-

chitccturing." Overarchitecturing in the case of networks with two layers of adaptive units
means using more first layer units than necessary. The number of output units is fixed

by the problem definition. As one overarchitects, there are more ways to achieve a set of

hidden patterns that are separable in the required ways by each of the output units. This

makes a given problem easier to solve. Thus, it is expected convergence rate would increase

and training required to reach convergence to decrease.

This example problem did not address the issue of generalization. Generalization is the
ability of a network to respond correctly to patterns it has not been specifically trained

on. In this example, the entire set of possible patterns were presented to the net during

training. The issue of generalization and the effect of overarchitecturing on generalization

performance will be addressed in the next section.
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Figure 4.4: Training a network to emulate another. The fixed net provides desired responses
for the adaptive net.

4.4 The Emulator Problem

One of the intended applications of neural networks is to learn the nonobvious relationships

between the inputs to a decision process and the resulting decision. It is a relatively simple

problem to write down a boolean logic function for the edge detector of the previous section.

Each output bit is a relatively simple function of the eight input bits. The ease with which
this can be done makes the problem a simple one to program on a computer. In similar
fashion one could write logical relationships for each output bit of the associative memory

problem addressed earlier. Due to the dimensionality of that problem, it would not be easy.

Trying to program this problem as a relationship between input bits and output bits would
be difficult. Thus, the function the Madaline performs in the associative memory case is

nonobvious. What ability does MRII have to train networks to learn nonobvious, perhaps

arbitrary, input/output relationships?
A structure to investigate this question is shown in Figure 4.4. The idea is to train an

adaptive net to emulate a fixed net. The two nets will receive the same inputs and have the

same number of output units. During training, the fixed net acts as a teacher by providing

desired responses to the adaptive net. The fixed net can have its weights set randomly to
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provide a wide range of arbitrary input/output mappings for the adaptive net to learn. The

adaptive net will have its weights initialized to some other random set of values. MRII will

be used to train the adaptive net to respond just like the fixed net to a given input.

If the adaptive net has the same architecture as the fixed net, then at least one set of

weights exist that will allow the adaptive net to emulate the fixed net perfectly, the set in

the fixed net. With this structure, one can be assured the problem being presented to the

adaptive net is solvable.

The issue of generalization is easily addressed by this structure. Training can be con-

ducted on a subset of the possible input patterns. After training is complete, patterns

not in the training set can be presented in parallel to the fixed and trained nets and their

responses compared.

The issue of overarchitecturing can also be addressed. There is no need for the adaptive

net to have the same number of first-layer units as the fixed net. It could have more. By

zeroing the weights of the unnieded units, the perfect solution offered by the fixed net

could still be obtained. The effect on generalization performance of extra units can be

easily checked.

The example presented here is a 16 input, 3-feed-3 fixed net. Adaptive nets with 3, 6,

and 9 first layer Adalines were trained. Two different size training sets were used. The

smaller set had 650 patterns and the larger set had 1500 patterns. These patterns were

selected randomly from the set of possible input patterns numbering 65,536. Training was

allowed to continue until convergence or 100,000 patterns were adapted upon. After training

was completed, generalization was checked on the balance of the possible input pattern set.

The results are shown in Table 4.2.

As in the case of the edge detector, overarchitecturing improved training performance.

The number of training attempts that reached convergence increased as extra units were

added to the adaptive net. The number of patterns that had to be adapted to reach

convergence decreased as the number of first layer Adalines increased. This is not surprising.

The generalization results though are surprising.

Generalization is seen to decrease with overarchitecturing. This is expected. The

amount of decrease is very slight though and this is surprising. Consider an adaptive

net with nine first layer units versus one with only three. The net with nine units has a

hidden pattern space with 512 patterns available in it. The minimal architecture can solve

the problem with only eight. The fact that the larger net arrives at a solution that preserves

generalization performance is counterintuitive.
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Emulating a 16 input, 3-feed-3 Fixed Madaline
adaptive net convergence ave patterns cnvgd. general. nonconverged best
architecture rate adapted bits() Ipats(%) bit trng rate (%)

650 Pattern Training Set
3-feed-3 58 1 22940 98.11 95.98 89.28
6-feed-3 72 20860 96.70 92.20 88.84

9-feed-3 80 16120 95.43 88.66 90.68
1500 Pattern Training Set

3-feed-3 39 50860 99.20 98.32 92.43
6-feed-3 65 46610 98.68 96.92 90.33
9-feed-3 65 37780 98.13 95.36 89.31

Table 4.2: Training and generalization performance for the emulator application. The fixed
net was 16 input, 3-feed-3.

As one would expect, the smaller training set is learned quicker and with a greater

convergence rate than the larger set. There is also the expected decrease in generalization

performance. This decrease is slight. This indicates that 650 patterns are sufficient to define

the type of problem the fixed net can present. The 650 patterns are sufficient to insure good

generalization even from the highly overarchitectured 9-feed-3 adaptive net. This training

set represents about one percent of the available patterns in the space.

Use of the smaller training set and larger adaptive nets can save a lot of training time.

The 9-feed-3 net with the smaller training set converges twice as often with one third the

number of adapted patterns as the 3-feed-3 net trained on 1500 patterns. The difference in

generalization performance is modest.

Not all training attempts reached convergence. Table 4.2 reports the average best bit

training rate for those cases that did not converge. Training set size and architecture of the

adaptive net had little effect on this measure of performance. Generalization testing was

performed on these nonconverged cases also. It was found that generalization performance

was very close to the performance on the training set at the cessation of training. To check

how well generalization tracks training performance, a generalization check was done at

each of the training checkpoints. A typical result is plotted in Figure 4.5. The adaptive

network is 9-feed-3, the one with the worst expected generalization performance, being

trained on the 1500 pattern training set. The plot shows that generalization and training

performance track each other closely at all levels of performance. This allows one to expect
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Figure 4.5: Tracking of generalization and training performances. Network is a 16 input
9-feed-3 emulating a 3-feed-3 fixed net.

that generalization performance will be good anytime one gets good training performance.

The plot shows that little added generalization performance was obtained during the final

9000 adapted patterns that led to final convergence.

The learning curve plot in Figure 4.5 is typical. MRII's performance rises quickly and

then levels off. Further improvements take a relatively long time to occur and do not happen

monotonically.

For those cases of nonconvergence, the final improvement towards convergence did not

happen in the limit set for training time. Unlike the failures to converge identified for

the edge detector and characterized in the next chapter, there is no indication here that

convergence wouldn't occur if enough time were allowed. The failure mode identified in the

next chapter could be responsible but just not recognizable. Due to the larger dimensionality

of this problem, specific reasons for nonconvergence could not be identified.



Chapter 5

A Failure Mode of MRII

The previous chapter showed the MRII algorithm does not always converge to a solution.

Examination of some instances of nonconvergence revealed a failure mode of MRII. This

chapter presents this failure mode by examining a particular instance of it. This particularly

simple example will show that a modification of the algorithm will be required to handle

this mode of failure. Some possible modifications are presented.

A secondary purpose of this chapter is to provide the reader some insight into the

dynamics of the algorithm. The example used in this chapter is simple enough to represent

in two dimensions, allowing presentation using graphical methods. The reader will be able

to see what happens to the mappings from input pattern to hidden pattern to output

pattern as trial adaptations and weight changes are made. While the chapter highlights

a case where the algorithm fails to proceed to a solution, its study can lead to a better

understanding of the methodology used by the algorithm.

5.1 The And/Xor Problem

The particular problem used for this example is called the and/xor problem. The challenge

is to train a 2-input, 2-feed-2 network to give the logical "and" of its inputs as its first

output, and the exclusive-or of its inputs as the second output. The desired input/output

mapping is presented as a truth table in Table 5.1.

A solution for this problem is shown graphically in Figure 5.1. In the figure, the decision

lines of the various Adalines have been identified by the weight vectors which define them.

To allow easy reference to these weight vectors a double superscript is used on the weight

45
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TRUTH TABLE
input desired

pattern response
X1 X2 di d2

+1 +1 +1 -1
+1 -1 -1 +1
-1 +1 -1 +1
-1 -1 -1 -1

Table 5.1: Truth table for the and/xor problem.

vector symbol. For instance, W21 refers to the weight vector of the first Adaline on the

second (output) layer. As there is only one hidden layer in this network, the superscript on

ff and its components has been dropped.

This particular problem forces the Adalines of the first layer to perform double duty.

They must provide a hidden pattern set that can be separated by the second output Ada-

line to do the exclusive-or function. This hidden pattern set must also be separable by

the first output Adaiine to allow realization of the and function. Thus there is an implicit

requirement for the output Adalines to cooperate with each other on settling upon a mu-

tually satisfactory hidden pattern set. The whole goal of MRII is to implement a method

to facilitate this cooperation.

For this particular problem and for some of the problems presented in Chapter 4, there

are states for the network from which MRII cannot proceed to a solution. The next section

will show an example of a limit cycle that MRII cannot escape.

5.2 A Limit Cycle

Consider a network with the following sets of weights in it:

W11 = [.3,-.15, -.3]T

w12 _-[-.15, .05,-.05]T

w'l -[.15, -. 15, .1 5 1T

w2 = [-.15, .15, .15]T
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State 1
input hidden output

pattern pattern pattern
z1  X2  hi h2  01 02

+1 +1 -1 -1 +1 -1
+1 -1 +1 -1 -1 -1"

-1 +1 +1 -1 -1 -1
-1 -1 +1 -1 -1 -1

Table 5.2: The input pattern to hidden pattern to output pattern mapping for State 1.
Incorrect output responses are marked by *.

These weights were taken from an actual simulation result. They have been rounded to

make easier the algebra and graphing to follow in this section. The decision lines and

mappings for this network are shown graphically in Figure 5.2. The mapping information

is also shown in tabular form in Table 5.2. In the table, incorrect output responses are

indicated by an asterisk. This set of weights and mappings will be referred to as State 1.

The network in State 1 makes an error for two of the four input patterns. The two

patterns produce the same hidden pattern and output response and also have the same

desired response. Therefore, it makes no difference which of these two patterns is considered

first. Until one of these error producing patterns is presented, no adaptations will take place

since the responses for the other two input patterns are correct. When one of the two input

patterns that result in an error is presented to the network, MRII will attempt to correct

the output by trial adapting the first layer Adalines.

At this point, it is important to note that ol is already correct. MRII will then accept

a first-layer trial adaptation only if it completely corrects the output pattern. It will not

accept a "trade" of errors in the bits of the output pattern. The Hamming distance between

the output and desired response must actually be reduced.

For an error producing input, the first layer responds with the hidden pattern hi = +1,

h2 = -1. A trial adaptation can be thought of as moving this hidden pattern to another

position in the hidden space and checking the decisions made by output Adalines on this

new point. This concept is shown graphically in Figure 5.3. This same information is show

in tabular form in Table 5.3. The table shows none of the possible trial adaptations will

completely correct the output so they will all be rejected. Failing to find an acceptable

first-layer adaptation, MRII will proceed by adapting the second output Adaline to provide
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Figure 5.3: Graphical presentation of trial adaptations from State 1.

the desired response, +1, for its input, the hidden pattern hi = +1, h2 = -1.
This brings the network to what will be referred to as State 2. The only change in the

network has been to the second output Adaline. The hidden patterns used by the network
have not changed. It is assumed the response to the hidden pattern hl = -1, h2 = -1,
has not been affected. The mapping information for the network in State 2 is shown in

Table 5.4. A repositioning of the second output Adaline's decision line in the hidden space

to provide this mapping is shown in Figure 5.4.

As Table 5.4 shows, the network now makes an error for only one input pattern, xi = -1

and x2 = -1. No adaptations will be made by the network until this pattern is presented.

The possible trial adaptations that can be made in this case will have the same bad result
that occurred from State 1. All trials will result in ol becoming incorrect. This is because

the hidden pattern is still the same as that considered in State 1 and the decision line of

the first output Adaline has not been changed in getting to State 2. Therefore, all the trial
adaptations will be rejected. The second output Adaline will again require adaptation. Its

input is the same as it was when adapting out of State 1, but the error is now opposite to
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Trial Adapting for State 1
Trial Adapt h, h 2  01 02

none +1 -1 -1 -1 *
fliph, -1 -1 +1* -1'
fliph 2  +1 +1 +1* +1

fipboth -1 +1 +1* -1"

Table 5.3: The results of trial adaptations from State 1.

State 2
input hidden output

pattern pattern pattern
X1  X2 hi h2  Ol 02

+i +1 -1 -1 +1 -1

+1 -i +1 -1 -1 +1
-1 +1 +1 -1 -1 +1
-1 -1 +1 -1 -1 +1*

Table 5.4: Mapping information for the network in State 2.

what it was. Thus, the adaptation will return the network to State 1, basically undoing

the previous adaptation. The network is in a limit cycle.

The astute reader will now question whether State 2 is the only possible result of

adapting out of State 1. Suppose the second output Adaline's response to the hidden

pattern h, = -1, h2 = -1 had also changed with the adaptation out of State 1. Indeed,

a plausible positioning for the second output Adaline's decision line is shown in Figure 5.5.

This would result in a State 3 whose mapping is detailed in Table 5.5.

An examination of Table 5.5 shows there are now two input patterns that result in

errors. For random presentation order, the pattern x, = +1, x2 = +1 will be presented

prior to the other error producing input sometime State 3 is visited. This input pattern

maps to a different hidden pattern than considered previously. For this hidden pattern, the

trial adaptation involving a flip of h2 corrects the output completely and will be accepted.

This trial adaptation is indicated on Figure 5.5. Thus, there exists a mechanism for escape

from the claimed limit cycle if State 3 can be reached. Unfortunately, State 3 cannot be

reached as a few lines of algebra will now show.

MRII uses the modified relaxation method for performing its weight adaptations. Given
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Figure 5.4: Separation of the hidden pattern space for State 2.

that it is desired to adapt only when there is a binary error present, all of the adaptation

procedures proposed by Mays [3] have the same basic form. Using k as an adaptation

counter, all the weight change formulas have the form,

AVWk = 6 kdkXk, 5k > 0.

Here it is emphasized that the size of the adaptation step is not necessarily constant from

adaptation to adaptation by subscripting 6.
MRII adapts only when there is a binary decision error present. This is in accord with

the minimal disturbance principle. When following this procedure, one will note that the

sign of the desired response and the sign of the analog error defined as, Ck = dk - Yk, will

be the same. Thus, even the famous Widrow-Hoff least means squares (LMS) algorithm
has the form above. The LMS algorithm is usually written, AWk = 2tck. Here the

magnitude of 2/1fk can be identified as 5k. All the various weight update methods used

to adapt Adalines differ only in how they choose 6 k. It will be shown that not only can
State 3 not be reached, but this non-reachability is not dependent on the weight update
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Figure 5.5: An output separation that would give State 3.

rule used.

The situation under consideration is the adaptation of the second output Adaline from

State 1. Assuming k adaptations have occurred to this point, the situation is as follows:j~k +1' -1]T- W22 .5T

= [+1, +1,- 1]T, 02 = -1, d2 = +1, and k = [-.15, .15, .1 5 T, where the bias

input component has been included in the hidden vector. For the moment, generalize the
so 22

second Adaline's weight vector to Wk = a[-1, +1, +1]T . This generalized weight vector

implements the same decision line but with a generalized confidence.

The particular requirement is to adapt the second output Adaline to provide a +1

response. Note that if the weight update rule does not select a large enough weight ad-

justment to actually change the binary response of the second Adaline, the network will

remain in State 1. The next presentation of a pattern producing an error will require

further adaptation of the second output Adaline. This will continue until State 2 is finally

reached. The weight update actually used by MRII will put the network in State 2 in one

step. The point here is that there is no advantage to adapting using smaller steps in this

case.
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Postulated State 3
input hidden output

pattern pattern pattern
X1  X2 hi h 2  O 02

+1 +1 -1 -1 +1 +1*
+1 -I +1 -1 -1 +1
-1 +1 +1 -1 -1 +1
-1 -1 +1 -1 -1 +1*

Table 5.5: Mapping for the postulated State 3.

After reaching State 2, the weight vector for the second output Adaline will have the

form, W,+ = [-a + k, a + k, a - bk]T. A minimum value of 6k can be computed since
-T.22

in State 2 it is required, Hk ,+1 > 0. The minimal value of bk works out to be a/3.

For the adaptation from State 1 to result in State 3, another minimal b can be

computed. The requirement to reach State 3 is that the hidden pattern h, = -1, h2 = -1,

be responded to with +1 by the second output Adaline. This requires bk > 3a. Thus, to

reach State 3, an adaptation step nine times larger than that needed to just reach State 2

is required. This fact is independent of the value of a. Such steps may not be consistent with

the minimal disturbance principle. Indeed, they may not be achievable by the particular

weight update rule in use.

Consider what the response to ilk will be if State 3 is reached. This value is what

the adaptation level, L, would have to have been in the MRII weight update rule when

adapting out of State 1. Setting bk = 3a in W*+1 and taking the dot product with I1 k one

gets 8a. For the particular example of this section, a = .15. If State 3 were the result of

adapting from State 1 the resulting response to the adapted on hidden pattern, rik, would

be greater than 1.2.

This resulting confidence is greater than the desired response for this hidden pattern.

None of the weight update rules use step sizes that result in overshooting the desired re-

sponse. Indeed, doing so is certainly not in accord with the minimal disturbance principle.

MRII is based on the minimal disturbance principle. No weight update rule that is consis-

tent with this principle will allow escape from the limit cycle that results in this example.
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5.3 Discussion

The previous section illustrates an example of MRII caught in a limit cycle. Why did this

cycle happen? The reasons are twofold. First, the first output Adaline reached a solution

before the second output Adaline. Second, the hidden pattern set settled upon by the first

output Adaline was unusable by the second output Adaline in reaching a solution. Any

attempt to change the hidden pattern set by the second output Adaline was .effectively

vetoed by the first output Adaline. Any change to the hidden pattern set destroyed the

solution arrived at by the first output Adaline. Thus, the system had entered a local error

minimum. No change on the first layer could reduce output errors.

The second layer Adalines found themselves in a situation not unlike that which inspired

the usage concept. There existed a nonseparable subset of hidden patterns that the second

output Adaline was forced to try to separate. It was successful at performing the separation

for a given presentation but could not come to a global solution. Unfortunately, usage is

not a technique that can be employed at the output layer. When the output layer is forced
to adapt, there is no freedom left to share responsibility for correcting an output.

At this point it is important to note that usage, even on the first layer, will not solve

this particular example. In examining the possible trial adaptations from State 1, all

were considered and rejected. Usage affects only which particular Adalines participate in

trial adaptations when participation is limited to some number less than the total num-

ber of Adalines on the layer. It can have no effect when all Adalines are considered for

participation.

In this particular example, the limit cycle is easily recognizable. It is characterized

by a lack of accepted trial adaptations on the first layer, and by a single output Adaline

being adapted over and over. The master controller could detect a lack of accepted trial

adaptations. In this case, there is hope for implementing an escape mechanism since a

developed limit cycle can be recognized.

For larger networks with larger training sets, the failure mode may not be so easily

recognizable. It may be possible for output units to come to solutions on subsets of the

training set. These units would then limit the allowable hidden patterns to a small set.

This small set would not allow the other units to come to global solution but allow some
first-layer trial adaptations to be accepted. The limit cycle would consist of a large number

of specific states. By restricting the hidden patterns to a nonsolvable set, wide variations

of training performance would be seen. This would effectively mask the failure mode. The
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author conjectures situations like this occurred in some of the failures to converge with the

emulator problem.

Though not reported in the previous chapter, solving the n-bit parity problem was

attempted by MRII. The network required is an n-input, n-feed-1 Madaline. This was

generally successful but a failure mode seen there was quite similar to the one noted above.

The parity problem has a single output, so there is no possibility of another output Adaline

vetoing trial adaptations as in the and/xor problem. What happens instead is that the

allowed trial adaptations are ineffective. The ones tried do not correct the output. This

happens because of the somewhat arbitrary limit placed on the number of Adalines that

will be considered for adaptation. The generally useful heuristic of considering the least

confident half of the Adalines on a layer sometimes fails. In this case, it is easy for the

master controller to increase the number of Adalines considered for adaptation and the

number of Adalines at a time that are trial adapted. Unfortunately, this procedure is very

heuristic. It does however work. With some experience, methods using this concept can be

implemented to cause the n-bit parity problem to almost always converge. The fine tuning

used to achieve good convergence for the n-bit parity problem will not always transfer to

another problem, nor even to the (n + 2)-bit parity problem so the details are omitted here.

Sometimes with smaller nets, all possible trial adaptations would be tried and rejected.

The cause for this was a large bias weight being initialized in the ouput Adaline. The bias

determined the network's response and the first-layer Adalines weren't weighted sufficiently

to have any effect. A simple solution to this is to initialize the weights in the output Adaline

all equal. It then starts as a majority voter, giving every first layer Adaline equal say in the

network response. In any event, these techniques will not allow escape from the and/xor

limit cycle detailed above.

The specific and/xor example cited in this chapter resulted after several earlier adap-

tations. Starting with the same initial weights, a different pattern presentation sequence

would avoid the limit cycle and instead converge to a solution quite quickly. The point is,

there seems to be no way to characterize a set of initial weights as being a set that leads to

a limit cycle. Indeed, a cursory look at the weights that were presented at the beginning

of the chapter shows nothing remarkable about them. They could easily have occurred at

initialization. Indeed, weights that define a limit cycle condition sometimes do occur at

initialization. It seems unlikely that a method for avoiding limit cycles can be found while

retaining the basic form of the algorithm. The only feasible strategy seems to be to detect

the limit cycle and then implement some escape.
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The minimal disturbance principle underlies the MRII algorithm. Any limit cycle escape

mechanism will have to selectively depart from the minimal disturbance principle, perhaps

in an extreme fashion. The size of the adaptation level needed to reach State 3 is an

example of how extreme this departure may have to be.

Various techniques have been used with varying degrees of success. Most are of a

heuristic nature, and often need to be hand crafted for the particular problem being solved.

Some of these techniques include: allowing the adaptation level of non-output units to

be a random variable; modifying the output unit adaptation levels by their usage count;

modifying the number of Adalines allowed to participate in trial adaptations by the average

output unit usage count. None of these offer much hope of being generally applicable.

Probably the easiest escape that is generally applicable is to reinitialize the weights in

the system and start the training over. Often this is not a bad thing to do. Experience

indicates that if MRII is going to find a solution it will find it fairly quickly. If training

performance levels off at an unacceptable level, after a reasonable time, start over. The

determination of a reasonable time can be done by doing an ensemble of training attempts.

A look at the average learning curve will reveal an average performance increase versus

adaptations performed. This will allow extrapolation to the convergence point allowing

one to set a reasonable limit to the number of adaptations that will be performed before

reinitializing.

Reinitialization has the drawback of losing all benefit of training performed up to that

point. Often the system will be somewhere near a solution and merely needs nudged out

of a local minima. One way to do this is to occasionally add some random perturbations

to the weights. This moves the system to a random place in weight space. The idea is to

get away from the local minima but not so far away from the previous weight position as

to negate all previous train" ig.

It is hoped this weight perturbation method would have some generality to it. Some

preliminary success has been achieved using this technique with the n-bit parity problem

for n up to seven. The perturbation magnitude needed and a schedule for applying it were

determined by experience. The magnitude of perturbations needed for a general problem

might depend only on the particular architecture being trained. Thus, an analysis of the

effect of weight perturbations on the input/output mapping of a Madaline system might be

very helpful in generalizing this technique. This reasoning is the prime motivation for the

sensitivity work presented in the next chapter.



Chapter 6

Sensitivity of Madalines to Weight

Disturbances

6.1 Motivation

It's been shown the training performance of Madaline Rule II rises quickly and then levels

off. For even moderately sized networks, the number of training attempts that result in

convergence represent a smaller fraction of the total attempts than one would like. For some

architectures, considerable refinement of the number of Adalines allowed to participate in

trial adaptations and adjustment of the "MULT" factor of the usage gain is required to get

performance levels like those reported in Chapter 4. The identified failure mode presented

in the previous chapter may account for much of the problem. In larger networks this failure

mode may be difficult to recognize. However, the problem may be more fundamental.

For the emulator problem, the weights in the fixed net were generated randomly. It may

be the network is non-robust in the weights. The mapping from input patterns to outputs

may change significantly for a very small change in the weights of the fixed net. If such

is the case, how close do the weights in the trained adaptive net have to be to the perfect

solution weights of the fixed net to get good performance? What is the rate of performance

degradation as the weights deviate further and further from exactly right?

An investigation of the sensitivity of the input/output mapping to changes in the weights

may lead to insightful improvements of the MRII algorithm. It was proposed at the end of

the last chapter to use random weight perturbations to escape from the algorithm's failure

mode. A thoughtful approach to this method requires some understanding of the weight

58



CHAPTER 6. SENSITIVITY OF MADALINES TO WEIGHT DISTURBANCES 59

Madaline
with

reference weights
+

input r w error
pattern p ve

MadalineL--6-with
perturb.r weights

Figure 6.1: Comparing a network with a weights perturbed version of itself.

sensitivity issue. The study may also suggest modifications of the network architectures

and input representations to minimize the effects of weight disturbances.

The investigation uses a structure similar to that of Figure 4.4. Instead of an adaptive

network being compared to a fixed network, a perturbed v hesion of a net is compared

against the unperturbed net, called the reference net, as shown in Figure 6.1. The effect

of weight changes, with known statistical distribution, on the input/output mapping of a
single Adaline is done first.

6.2 Perturbing the Weights of a Single Adaline

Hoff [6] did an analysis of the effect of weight perturbations on the decision mapping of

an Adaline using the hypersphere approximation. He did his analysis in the n-dimensional

pattern space. As pointed out in Chapter 2, the bias weight introduces a complication

to such an analysis. The bias weight is not considered part of the weight vector by Hoff.

This causes the separating hyperplane to pass through the pattern hypersphere offset from

the origin by a distance dependent on the bias weight, and the magnitude of the reduced

dimension weight vector. Changes in the weights must then be resolved into components

parallel and perpendicular to the weight vector. The final results were complicated and

difficult to apply to answering the question of how close weights have to be to a known

solution for good performance.
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By using the hypersphere approximation in the (n + 1)-dimensional weight space, sim-

plifications occur. The input pattern is now considered to be of dimension n + 1, but with

the bias input, xo, a constant +1. The set of all possible input patterns now lie on the

positive x0 half of a hypersphere of radius V'WWT centered at the origin of (n + 1)-space.

Glanz [8I maintained the hypersphere approximation could now be applied to this hemi-

hypersphere. The patterns are now confined to an oriented half of the hypersphere but

within this region they are assumed uniformly distributed. The major simplification is that

now the separating hyperplane always passes through the origin. The decision of which

input patterns are classified +1 and which are -1 is determined by how the hyperplane

intersects the pattern hemihypersphere. Changes in the weights cause the orientation of

the hyperplane to change. These changes can now be described by a single parameter, the

angle between the original weight vector and the new weight vector.

In Figure 6.2 the positive x0 hemihypersphere, a weight vector, a perturbed weight

vector and the associated intersections of the decision hyperplanes are shown. The result

of perturbing the weight vector is a reorientation of the decision hyperplane. For those

patterns in the darker shaded region, the perturbed network will make a "decision error"

relative to the reference network.

The darker shaded area consists of two partial lunes. By symmetry, one can see the

area of the two partial lunes add to that of a lune of angle 0, the angle between the weight

and perturbed weight vectors. Using the hypersphere approximation, the probability of a

decision error due to a shift in the weight vector is:

P[Decision Error] = Area of shaded lune
Area of hemihypersphere

0

7r

Taking the expectation of both sides,

Ave P[Decision Errors] = E _} (6.1)
7r 7r

To determine j, look at Figure 6.3. In (n + 1)-space, V and AW determine a plane and

the angle between them in that plane, 0. The angle, 0, between W and W + AW can be

found by plane geometry.

0 = tan-1 IJA'WIsin0 = tn JIl + IAN~vl cos i,
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Figure 6.2: Reorientation of the decision hyperplane due to a disturbance of the weight
vector. Patterns lying in the darker shaded region change classification.

I sin
= tan-1

- l + cos€
FxWI

tan- 1 (J W sin j for IWI > 1

Using tan - 1 x x for small x,

9 A"W I sin

Then, 

'W i

It has been assumed here that the ratio of the magnitude of the weight perturbation vector
to the magnitude of the original weight vector is known and constant. If this is not the
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Figure 6.3: Geometry in the plane determined by W and AW.

case, but the perturbations are independent of each other and independent of the original

weights, an average perturbation magnitude can be used.

To complete the derivation of the average decision errors a single Adaline makes due

to perturbation of its weights, a formula for E{sin 0} is needed. The vectors WV and ALV,

or their extensions, will intersect a hypersphere of unit radius. Since only the directions

of these vectors determine 0, the analysis can assume a unit radius sphere without loss

of generality. Glanz [81 notes that the probability that the angle between two vectors, V,

and V2, has value between 0 and 0 + A0 is proportional to the differential area at angle 0

(see Equation 2.4). Modifying his equation for use in (n + 1)-space, the probability density

function can be written,

p[ Vi and V2 form angle ] = sin+--' (6.2)

Therefore,

E{sin0} fir sin J Kn sin'-'d<0 Kn+ I

2K,. I 2
-sinn~s

Kn(nllo

2K, V r(nl)

Kn+ 1 2F(1 + 1)
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- r(+) 2r+ r( + 1)

r2 (n2) 2
r () n

(_KLn) 2 27r (6.3)

This result can be further simplified by using Stirling's approximation for factorials and

the expressions for Kn for n even and odd in Equations 2.2 and 2.3. Stirling's approximation

is:

n! ; V2"nnne-".

For n - 2m,

Kn 27r' (2m)!

Kn+1 (m - 1)! 7rm2 2m+1m!

(2m)!
22- M! (M- )

m (2m)!

22m (M!) 2

mv'4"rm (2m)
2me- 2m

22m 27rm M 2me - 2m

ffT = for n even.

Fornodd, n =2m+l and n+ 1 =2(m+l),

Kn _ '22- +l(M)! mn!

Kn+j (2m)! 27rm+l

22m (M!) 2

ir (2m)!

2 2m (v2- me-m )

irV - 2 (2m)2me-2m

2irm

n- for n odd.

V•m mm2m
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For n sufficiently large, the even and odd cases become indistinguishable and it can be

approximated,

T for n large (6.4)Kn+l 7

With this result, Equation 6.3 becomes,

E{sin 0} ;
7r)n

S1 for n large

The final result for determining the change in the input/output mapping of an Adaline

caused by a disturbance of its weights can now be formulated. Using the results so far,

P[Decision Error] = 3
7r

l -tVW 2 r (6.5)
7r I I Kn+1 ) n

S1 (6.6)

The last two expressions represent different levels of approximation. Future reference will

call the first the complicated approximation while the second will be called the simple

approximation. The simple approximation ignores any dependency on the number of inputs

and is good in the limit as n gets large.

6.3 Decision Errors Due to Input Errors

The above result can be used to predict the error rate of an Adaline in the first layer of a

multilayer network. For a randomly generated reference network, it can be assumed that

first-layer Adalines will behave independently of each other. Assume all Adalines of the

first layer are affected by weight disturbances such that their weight perturbation ratios,

JAW/IWI are the same. They will all have, on average, the same probability of making an

error. The number of errors in the output of this first layer of a perturbed network relative

to the reference network will be binomially distributed. This distribution has as parameters

the number of first-layer Adalines and the error rate of an Adaline.

The perturbed net's second layer will see inputs that are in error relative to those seen

by the second layer of the reference network. Some of these erroneous patterns may cause
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decision errors at the network output even if there are no weight errors in the second and

subsequent layers. The basic question to investigate then is, how do random input errors

affect an Adaline's decision mapping?

In the binary case where the components of the input are either +1 or -1, an input

error can be thought of as a "flipped" bit. If a pattern has one flipped bit, the result is a

nearest neighbor, a pattern of Hamming distance one from the original. One way to think

of flipping a bit is to add a AR to R. To generate a nearest neighbor of X, add a vector to

it that has all components equal to zero except for one, say the ith. Let the ith component,
Axi be equal to -2xi. This disturbance vector has a Euclidean length of two.

In general, you can generate a pattern vector which is a Hamming distance h from a

given pattern A, by flipping h of its bits. This can be done by adding a disturbance vector

AX having h nonzero components equal to -2 times the corresponding X component. This

AR will have a Euclidean length of vA4-h.

Note that all of 's pattern neighbors of Hamming distance h are at the same Eu-

clidean distance from R. Thus, the pattern neighbors of given Hamming distance from 9
lie on a hypersphere of radius /4h with the tip of 9 as origin. The neighbors also lie on

the pattern hemihypersphere on which X is located, since they are legitimate patterns in

the input space. The possibility of the bias input being flipped is excluded. The inter-

section of these two hyperspheric regions is a hypersphere of dimension one less than the

pattern hemihypersphere. Hoff's hypersphere approximation leads one to conjecture that

the pattern neighbors of YC are uniformly distributed on this reduced dimension surface.

A visualization that supports this conjecture is shown in Figure 6.4. Consider the situa-
tion where n = 3 and there is no bias input. The eight patterns available in 3-space form

the vertices of a cube which can be inscribed in a sphere (not shown in the figure). The

vertex marked )9 has three nearest neighbors. They lie equally spaced on a circle which

lies in a plane. Furthermore, the vector 9 intersects this plane at the center of the circle.

For the following analysis, it will be assumed the conjecture of a pattern's neighbors being

uniformly distributed in the reduced dimension space to be true.

If the weight vector components are chosen from a zero mean distribution, the weight

vector will be orthogonal to the xo axis, on average. This is because the expected value

of the dot product of the weight vector with the x0 axis is the expected value of the bias
weight, which is zero. This leads to the intuitive conclusion that an "average" Adaline will

have equally likely +1 and -1 outputs. This average Adaline will be analyzed to determine

the effect of random input errors on its input/output map.
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Figure 6.4: The nearest neighbors of X lie equally spaced on a reduced dimension hyper-

sphere.

The idea of the analysis is shown in Figure 6.5. Without loss of generality, assume the

pattern vector of interest lies on the positive side of the decision hyperplane. Shown

in the figure is a representation of the location of the pattern neighbors located Eucidean

distance d from two different X s. Xi is located sufficiently far from the decision hyperplane

that all of its pattern neighbors distance d away will be classified positive. No errors will

be made by this Adaline if any of these neighbors are input instead of the correct pattern

. The pattern 2 is located closer to the decision hyperplane and some of its neighbors

at distance d are on the opposite side of the decision hyperplane. Thus, a fraction of those

times that a neighbor is presented instead of the correct cl2, a decision error will be made

by the Adaline. It will be determined here what fraction of these neighbor presentations

will result in decision errors.

At this point, the notions of dimensionality need to be made more precise. The termi-
nology employed by Sommerville (101 will be used. The input patterns lie on a hypersphere
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Figure 6.5: All the patterns at distance d from I will be classified the same as X1. Some
of the patterns at distance d from ,2 are classified different from 92.

of n dimensions in (n + 1)-space. The hypersphere is of dimension n because only n compo-

nents are needed to specify a point on this surface. The 2'n patterns considered to make up

the input space of the Adaline are confined to the positive x0 hemihypersphere. The bias

input is supplied internally by the Adaline and is considered not subject to error. As has

been pointed out before, the decision hyperplane of an Adaline described analytically by

XT v = 0, is a surface of n dimensions. Sommerville calls this an n-fiat but will be referred

to as an n-dimensional hyperplane here. The pattern neighbors of 9 at Euclidean distance

d are located on a surface defined by the intersection of two hyperspheres of n dimensions

in (n + 1)-space. The first hypersphere is the one of radius ,/W-+ centered at the origin

and the second is the hypersphere of radius d = V/7 centered about the tip of 9. This

intersection is a hypersphere of dimension n - 1. Furthermore, this intersection lies in an

n-dimensional hyperplane. This can be seen as follows. Let I4 be a pattern neighbor. It is

representable by 1q = , + A9 where A9 is of the form described earlier. Then,

= = II z +
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Figure 6.6: A representation of the location of the patterns at distance d from the input
vector .

= n + 1 + -2h = a constant,

h being the Hamming distance of the neighbor. This is the equation of an n-dimensional

hyperplane at a distance from the origin of (n + 1 - 2h)/iF F1 = r - (2h/r) where

r = /n-+ 1 is the radius of the pattern hypersphere. Thus, the pattern neighbors of )9

at Euclidean distance d lie on a hypersphere of limension n - 1 which is contained in an

n-dimensional hyperplane.

The details of the geometric analysis are presented in Figures 6.6-6.8. Figure 6.6 shows

a representation of the situation in the (n + 1)-dimensional pattern/weight space. Here

the perspective is rotated such that the true pattern vector Y. is pointing up. The pattern

neighbors of ) that lie at Euclidean distance d from X are represented by a circle which lies

on the pattern sphere. This circle lies in a plane which cuts off a spherical cap. This cap is

shaded in the figure to aid visualization. The figure is only an aid for visualization purposes.

More precisely, the patterns are located on a hypersphere of n dimensions. The pattern

neighbors are on a hypersphere of n - 1 dimensions which lies in an n-fiat which cuts off a

hyperspherical cap from the pattcrn hypersphere. Because the perspective has been rotated,

the hemisphere shown in the figure no longer represents the pattern hemihypersphere. The
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decision

hypersphere

Figure 6.7: A representation of the geometry in the plane formed by W and .

pattern neighbors of 9 do lie on the pattern hemihypersphere, however, and it will be

assumed that their distribution is unaffected by "edge" effects caused by the actual position

of the pattern hemihypersphere. This assumption is good for the average Adaline that has

not too many input errors in the pattern presented.

The pattern vector A and weight vector W define a plane. Figure 6.7 shows the geometry

in this plane. This plane intersects the decision hyperplane in a line, and the pattern

hypersphere in a circular arc. The plane intersects the hypersphere of n - 1 dimensions

containing the pattern neighbors in two points. Ordinary plane geometry can be used for

analysis in this plane formed by X and W.

A representation of the hyperplane containing the pattern neighbors is shown in Fig-

ure 6.8. This hyperplane forms the floor of the hyperspherical cap, and the circle represents

the hypersphere in which the pattern neighbors lie. The center of this hypersphere is the

intersection of the hyperplane containing the neighbor patterns and the vector ). The deci-
sion hyperplane intersects the hyperplane containing the pattern neighbors in a hyperplane

of dimension n - 1 or an (n - 1)-flat, represented by a line in the figure. The pattern neigh-

bors on the opposite side of the decision hyperplane from the center of the pattern neighbor

hypersphere will cause errors if they are presented to the Adaline instead of the true pattern

A. The Hoff hypersphere approximation says the probability of error will be the ratio of

the area of the neighbor hypersphere on the opposite side of the decision hyperplane to the
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intersection

hypersphere

Figure 6.8: Representation of the geometry in the hyperplane containing the patterns at

distance d from X. This hyperplane is the floor of the shaded cap in Figure 6.6.

total area of the neighbor hypersphere. The radius of the neighbor pattern hypersphre is

designated r'. The ditance from the center of this hypersphere to ts :ntersection with

the decision hyperplane is designated d'. Determining r' and d' allows the determination

of the angle y, which can be used to compute the required area on the opposite side of the

decision hyperplane. The quantities r' and d' can be determined using plane geometry in

the I9-W plane showni in Figure 6.7.

Referring back to Figure 6.7 an expression for the angle a is derived first.

Q= sin-
1 (-d)

Now r' can be computed.
r 

i

- = sin 2a
r

r/ = r sin(2 sin 1 d

.. • miramm u nlmmlmn IiI1 |2r)
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= 2rsin (sin- d) cos (sin- d )

= 2r± 1 - d)"

= d - r

An intermediate result, s is now derived.

S
- = Cos 2a
r

3 = rcos(2 sin-1 d)

= r (1-2sin2 (sin- dr))

2r2 - d2

2r

With an expression for s, d' can now be derived.

d l
- = tan/3
S

d 2r2 - d2
2r

Now -f can be derived by referring to Figure 6.8.

y =I
= Cos- I (22-" _ a

- ~ 2 cosj ((r~ 7dr )2)

= C ((2r2-d2) tan,)

- os- \ -r_ -( 6.

= cos - (p t a n ) (6.7)
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where p is defined,
p = 2r 2 - d2 (6.8)

The area of the neighbor hypersphere on the opposite side of the decision hyperplane

from the true input vector can be expressed by the integral,

0 r Kn-1 (r i sin O),n-2 r'dO.

This integral sums up slices perpendicular to the line that d' lies on in Figure 6.8. Each

slice is the area of a hypersphere of dimension n - 2, and has a thickness of r' d4, where 0 is

an angle measured from the line d' lies on. The probability of error then when a neighbor

pattern is presented instead of the true pattern is the ratio of the integral above to the total

surface content of the neighbor pattern hypersphere,

P[errorlinput error] = E_ jcos-,W) sin n- 2 dO (6.9)

This conditional probability is a function of 3, the angle from X to the decision hyperplane.

For,3 ; 0, the pattern R lies very close to the decision hyperplane and one would expect the

probability of an error to be one-half. Indeed, the reader can check that Equation 6.9 yields

a value of one-half for 0 = 0. For /3 > 2a, X is sufficiently far from the decision hyperplane

that none of the pattern neighbors produce errors. To get an average probability of error

when the input is a pattern at distance d from the true input, the error rate above must be

weighted by the probability density of finding the true pattern at angle /3 from the decision

hyperplane. For positive patterns, /3 is 7r/2 less the angle between 9 and W. Using a

modification of Equation 6.2 and remembering the patterns exist on a hemihypersphere,

the average probability of error for an average Adaline can be written,
fo2cC'(P) Kn- sin d.. __ o do

Ave P[decision error] = 11Ksin" 2 ,d) cos 1/3 d/310 0Kn, IKn+l1

K. 2 sin-1 
d. (PP

2 -I 21 / sinn-20cos'-/d' d/3 (6.10)

This double integral can be evaluated numerically on a computer. Because of the de-

pendency of the upper limit of the inner integral on the outer variable of integration and

the large range of integration of the inner integral, it is difficult to arrive at a closed form

approximation. An approximation arrived at by a combination of intuition and accident is,

1 I XlAve P[decision ec ror] - . (6.11)
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This approximation is quite similar to the result obtained when decision errors due to

weight errors were analyzed. The intuition was that there exists a basic symmetry when

working in the (n + 1)-dimensional pattern/weight space. No further justification of the

approximation will be presented other than to show during the results to follow that it is

accurate. The approximation is most accurate for small numbers of errors in the patterns

but is not unusable for numbers of errors approaching half the number of inputs. The

integral expression cannot be expected to hold for errors numbering more than this due

to the assumption about "edge effects" not affecting the distribution of neighbor patterns

about the true pattern.

At this point it should be noted that though the effects of weight errors and input errors

are similar, their effects are independent. The above result for input errors is unaffected

by weight errors that might be present. The result shows the effect of using a pattern's

neighbors at a given distance away from it as inputs to the Adaline instead of the pattern

itself. When looking over the entire input space, it really doesn't matter where the decision

hyperplane is (as long as the Adaline is close to average). For a particular position of the

decision hyperplane, there will be a set of patterns whose neighbors will cause errors if

the neighbors are presented. Moving the position of the hyperplane by weight errors will

change that set of patterns which will be involved in decision errors if their neighbors are

presented, but over the input space, the number of such patterns will remain the same.

Therefore, if errors in the weights are also present, these errors will, on average, affect only

those patterns which are presented with no input errors.

6.4 Total Decision Errors for Adalines and Madalines

The results from the above two sections now allow a formulation of the total probability of

an Adaline making a decision error due to the combined effects of weight errors and input

errors. In networks where it can be assumed the Adalines are independent of each other,

this result can be extended to predict the error rate of the entire network.

An introduction of new notation will facilitate writing the results compactly. Define

Vh as the probability an Adaline makes a decision error given that its input has h errors.

Define . as the total probability that an Adaline makes a decision error. Then,

E = Zh P[input has h errors] (6.12)
h=O
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From Section 6.2 and the discussion above about the independence of weight errors and

input errors it is concluded that,

DO r K_ - (6.13)
r I V Il ,+

A(6.14)

Dh for h other than zero is obtained from Equation 6.10 or 6.11. At this point use the

facts that r = / +I and d = V47h in these two equations and the defining equation for p.

As explicit functions of h and n they become,

p
2 

si- o 0

Ph = 2 Kn-: ' J0 sinn-2€ cosn-13 dod/o (6.15)

1 4h
V n+1(6.16)

and p as defined in Equation 6.8 is now given by,

n + 1 - 2h

The equations above allow one to predict the average decision errors that a weights per-
turbed Madaline will make relative to its unperturbed reference. The use of Equations 6.13

and 6.15 in Equation 6.12 will be referred to as the complicated approximation. The sim-

ple approximation will mean the use of the simpler Equations 6.1A and 6.16. Knowledge
about the relative magnitudes of the weight disturbance vectors relative to the unperturbed

weight vectors of the Madaline is needed.

When comparing a perturbed net against a reference, one must assume the input pat-

terns to the first layer contain no errors. The reference will respond to what it sees as if it
were the true input and the perturbed net's response is compared against the reference's

output. The theory developed above however is more powerful. It can be used to factor in

knowledge about the distribution of errors in the input patterns to a network to predict its

performance under real conditions.

An analysis begins with the first layer. If only weight errors are present, Equation 6.13

or 6.14 will provide the error rate for each Adaline on the layer. The binomial distribution

is used to predict the probability of the first hidden pattern having a given number of errors.
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This then is the input error distribution for the second layer Adalines. This information is

used in Equation 6.12 to predict the error rate for each Adaline in the next layer, etc.

The above derivations made use of some approximations. Most of these approximations

required either the weight perturbations or the Hamming distance between true inputs and

erroneous inputs to be small. The results, especially Equations 6.14 and 6.!6 are quite

simple in form. They cannot be expected to hold in cases of large weight perturbations or

high probability of input errors. The next section will show the results of simulations to

check the accuracy of the theory and the approximations of the theory made above.

6.5 Simulation Results

The system depicted in Figure 6.1 was used to test the theory developed in the previous
sections. A reference Madaline system was generated randomly by selecting each weight

in the system independently from a uniform distribution over the interval (-1, +1). These
weights were then copied to the perturbed system.

To the weight vectors of each Adaline in the perturbed system a weight perturbation vec-

tor A was added. This vector was generated by selecting each component independently

from the same uniform distribution as before. The perturbation vector was then scaled so

that a desired weight perturbation ratio, jAWjIiWV, was obtained. Thus the assumptions
of the derivation were maintained. The orientation of the perturbation weight vector was

random and independent of the reference weight vector but had a fixed magnitude relative

to the reference. This weight perturbation ratio is expressed as a percentage in the results

that follow.

A large number of patterns from the input space were then presented to the reference and

perturbed systems in parallel and their outputs compared. If any bit of the outputs differed,

a decision error was said to have been made. The results present the number of decision

errors as a percentage of the patterns tested. For any given architecture being checked,
this procedure was repeated for several different reference systems. Several perturbations

of each reference system were tested. The results presented are the average percent decision

errors over the different references and their perturbations.

The first system investigated is that of a single Adaline. No input errors are allowed

since the reference needs a true input to calculate a true result. The only term needed in
Equation 6.12 then is the DO term. The simulation performed used fifty reference Adalines.

Each reference was compared with fifty different perturbations of itself and the results
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Single Adaline Sensitivity Study
% Decision % Decision % Decision

kziwI Errors Errors Errors

(V % Simple Complicated Simulation
Approximation Approximation Results

5 1.59 1.50 1.53
10 3.18 2.99 3.11
20 6.37 5.98 6.15
30 9.55 8.97 9.06

n= 16
5 1.59 1.54 1.56

10 3.18 3.09 3.12
20 6.37 6.17 6.19
30 9.55 9.26 9.17

n =30
5 1.59 1.57 1.57

10 3.18 3.13 3.14
20 6.37 6.26 6.24
30 9.55 9.39 9.22

n =49

5 1.59 1.58 1.58
10 3.18 3.15 3.16
20 6.37 6.30 6.25
30 9.55 9.45 9.24

Table 6.1: Effects of perturbing the weights of a single Adaline. The predicted and simulated
percentage decision errors for weight disturbance ratios of 5, 10, 20 and 30 percent are shown
for Adalines with 8, 16, 30, and 49 inputs.

averaged. This was repeated at each value of weight perturbation ratio. The predictions

by the simple and complicated theory approximations and the simulation averages are

tabulated for different n and IA'7I/IWl in Table 6.1.

The results show there is a weak dependence on n which is well predicted by the com-

plicated theory approximation. The simple approximation is good in the limit as n grows

large and is an upper limit. The simulation results generally lie between the predictions of

the two formulas. To gain an appreciation of the weak dependence on n and how close the

simple approximation is, the data and the simple approximation prediction are plotted in
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Single Adaline Sensitivity Study
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Figure 6.9: Sensitivity of the single Adaline. Dotted lines are simulation results for Adalines
with 8, 16, 30, and 49 inputs. Solid line is the theory prediction by the simple approximation.
Data is taken from Table 6.1.

Figure 6.9. The plots nearly lie on top of each other. The complicated approximation would

lie on top of the simulation plots and is not shown. The important thing to note is the

linear dependence on the weight perturbation ratio as predicted by the theory is borne out

by the simulation results. It can be concluded that the theory is very accurate in predicting

the effects of weight perturbations on a single Adaline.

For a network with randomly generated weights, the above validated theory can be

applied independently to each Adaline in Lhe first layer. The distribution of the Hamming

distances between the hidden patterns of a reference and perturbed system can be predicted

using the binomial distribution. This information can be used in Equation 6.12 along with

the results derived for the effect of input errors on the decision mapping of an Adaline

to predict the performance of second (output) layer Adalines. As before, the simple and

complicated theory approximations will be presented.
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Input Errors and Decision Errors for Output Adaline
49 input, 35-feed-1 Madaline, W = .2

frequency (%) of input errors miss rate, Dh (%), of each input error
errors simple complicated observed simple complicated observed

0 10.00 10.25 10.47 6.36 6.28 6.13
1 23.80 24.12 24.41 10.61 10.66 12.78
2 27.51 27.58 27.66 15.00 15.15 16.48
3 20.58 20.40 20.23 18.38 18.64 19.66
4 11.19 10.98 10.78 21.22 21.63 22.48
5 4.72 4.58 4.45 23.72 24.31 24.96
6 1.60 1.54 1.48 25.99 26.77 27.26
7 .45 .43 .40 28.07 29.07 29.52

Csimple = 15.15%
Ccomplicated = 15.26%

Eob.,vd = 16.39%

Table 6.2: An output Adaline sees errors in its input relative to the reference network.
Predicted and observed frequency of each number of input errors and predicted and observed
error rates for each number of input errors are presented.

A Madaline with 49 inputs, 35 first-layer Adalines and 1 output Adaline was simulated
in the configuration of Figure 6.1. The weight perturbation ratio was 20% for each AdaJine

in the system. The error rate for each first-layer Adaline is just Do since the inputs are

assumed to be without error. This rate is used in the binomial distribution to predict the

distribution of input errors to the output Adaline that the perturbed system sees relative
to the reference system. Since the simple and complicated theory approximations use

different formulae for Do, the predicted frequency of each number of input errors to the
output Adaline will be slightly different for the two approximations. The rate at which the

output Adaline will miss each occurrence of a hidden pattern with a given number of errors

in it are given by the formulas for Dh with the understanding that the output Adaline has

35 inputs. The total error rate for the output Adaline is computed using Equation 6.12.

All this information for both the complicated and simple theory approximations as well as

simulation results is presented in Table 6.2.

The table shows excellent agreement between the simple and complicated theory ap-

proximations. This particular case involved a weight perturbation ratio of 20%. At this

level of distvrrbance the theory is underestimating the observed error rates for inputs with
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Single-output Madaline Sensitivity Study
% Decision % Decision % Decision

AW[ (M Errors Errors Errors
IAI Simple Complicated Simulation

Approximation Approximation Results

10 8.79 8.66 8.97
20 14.46 14.39 14.96
30 18.45 18.49 19.47

Table 6.3: Percent decision errors for a 16-input, 16-feed-1 Madaline with weight disturbance
ratios of 10, 20, and 30 percent.

one error or more. The theory is closer at lower disturbance levels but remains useful at

even higher weight perturbation ratios.

The next result shows how well the theory predicts output Adaline error rates over a

range of weight disturbance ratios. The system simulated was an n-input ni-feed-1 network.

A typical result is presented here for n = nl = 16. In this simulation 15 reference nets

were each perturbed 25 times for each value of the weight perturbation ratio. The average

results are tabulated in Table 6.3 and plotted in Figure 6.10.

Theory and simulation are found to be acceptably close though diverging somewhat

at the higher perturbation levels. The simple and complicated approximations are nearly

identical over the whole range of perturbations. Examination of Table 6.2 may cau . one

to wonder why they can be so close. The output Adaline Phs are lower for the simple

approximation than the complicated. The simple approximation however uses a higher error

rate, the upper bound for n large, for the first-layer Adalines. This pushes the distribution

of predicted input errors to the output Adaline to a higher average number of errors.

The approximation errors balance each other out to provide an excellent match to the

complicated approximation prediction.

To provide a test of the theories on a multioutput network, a 49-input 25-feed-3 network

was simulated. Ten reference nets each perturbed 15 times for each weight perturbation

ratio tested were averaged to get the results in Table 6.4. Here, weight perturbation ratios

lower than any previously presented were tried to check the accuracy of the theory at smaller

disturbance levels. A plot of the data alongside the simple and complicated theory approxi-

mations is shown in Figure 6.11. The excellent agreement between the two approximations

of the theory is repeated in this example. Both provide very accurate predictions compared
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Single-Output Madaline Sensitivity Study
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Figure 6.10: Percent decision errors versus percent weight perturbation. Network is a
16-input, 16-feed-1 Madaline. Theory predictions by two different levels of approximation
are shown with simulation results. Data from Table 6.3.

Multioutput Madaline Sensitivity Study
% Decision % Decision % Decision

JAWI M Errors Errors Errors
,wj (%) Simple Complicated Simulation

Approximation Approximation Results

1 3.75 3.73 3.60
5 15.69 15.64 15.44

10 25.93 25.93 26.11
20 38.42 38.65 39.95
30 46.17 46.66 49.12

Table 6.4: Simulation vs. theory for a multioutput Madaline. The network was a 49-input,
25-feed-3. A decision error occurs when any bit of the output is different from the reference.
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Multioutput Madaline Sensitivity Study
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Figure 6.11: Decision Errors vs. Weight Perturbation Ratio for a multioutput Madaline.
Network is 49-input, 25-feed-3. Data taken from Table 6.4.

to the simulation results.

6.6 Discussion

This chapter derives a fairly simple theory. This theory relates the change of the in-

put/output mapping of a Madaline to the size of weight perturbations relative to a reference

system. Two different levels of approximation have been addressed throughout the chap-

ter. The approximations do not differ from each other by very much 'nd dlosely predict

results obtained by simulation. The results obtainable by the simple approximation make

the added computation of the more complicated approximation unwarrantable.

The basic theory is valid for the single Adaline an! was derived using two basic as-

sumptions. It was assumed the weight perturbations would be independent of the reference

weights and that knowledge of the ratio of the magnitude of the perturbation weight vector

to the magnitude of the reference weight vector would be known. The second assumption
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was that the distribution of input errors would be known or computable and that errors

would occur independently by bit.

This theory for the single Adaline can be applied to networks of Adalines if the Adalines

can be considered independent of each other. This is the case for a randomly generated

network. This type of network served as the fixed net for the emulator training experiments

conducted in Chapter 4. The motivation for developing the theory was to gain an appreci-

ation of how close to the reference solution a trained network would have to be to get good

results.

This issue of closeness can now be addressed. One way to measure closeness between

two weight vectors would be to consider the angle between them. The most basic result

derived in this chapter, Equation 6.1, says performance degradation is directly proportional

to this angle. Another result shows this angle is the same as the weight perturbation ratio

when n is large (for small angle). A 10 percent weight perturbation ratio means the angle

between the two weight vectors being compared is about 6 degrees (.1 radian). A single

Adaline, with no input errors to aggravate the situation, will suffer a performance difference
of about 3% (10%/ir). The performance degradation is also linear in the deviation angle

or equivalently, the weight perturbation ratio. An angle of 12 degrees between two weight

vectors would cause a 6% difference in the mappings of the two Adalines. This doesn't seem

particularly bad.

Unfortunately, useful networks will require more than one Adaline. The binomial dis-

tribution is unforgiving. Suppose a network's first layer has 6 Adalines each of which are

responding correctly to 94% of its inputs. The aggregate response of the layer will be com-

pletely correct only about 69% of the time if the Adalines make their errors independently

of each other. If this layer is providing inputs to another layer, this can be disastrous. Or

is it?

It will be remembered that the error rate of a single Adaline due to weight disturbances
was only weakly dependent on the number of inputs and actually upper bounded by the

simple theory approximation. How is the error rate of a second layer Adaline affected by

the number of Adalines on the first layer? For the example shown in Table 6.2, about 90%

of the hidden patterns presented to the output Adaline had an error in them. Only 15%

of the output Adaline's responses were incorrect. Thus, the output Adaline "cleaned up"

most of the errors presented to it. How is this ability affected by the number of Adalines

on the first layer for a given weight perturbation ratio?

The theory was exercised and simulations to confirm the theory's predictions on this
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Effect of Number of First Layer Adalines
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Figure 6.12: Sensitivity of networks as ni is varied. The net used had 49 inputs, 1 output
Adaline and the percent weight perturbation ratio was 20%. Actual data points for the
simulation results are marked by "o".

matter were performed. The results are shown in Figure 6.12. The networks all had 49

inputs and the same percent weight perturbation ratio of 20%. Networks with n1 = 8, 16,

25, 35 and 49 were simulated. For nj greater than about 15, theory predicts and simulation

bears ouit that output error rate is unaffected by the number of first-layer units. This is

similar to the single Adaline with no input errors.

The error rate per output Adaline is somewhat immune then to the architecture of the

network preceding it. The true curse of the binomial distribution is felt at the output layer.

The ability of multioutput Madalines to produce a response with all bits correct is very

dependent on how many output Adalines there are. A small per Adaline error rate in the

output layer can cause large output pattern error rates in systems with only a few output

Adalines. The 3 output Madaline graphed in Figure 6.11 has decision errors in 25% of its

responses for only a ten percent weight perturbation error.
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This sensitivity shown by randomly generated networks indicate they make poor teach-

ers. To achieve good training performance with the fixed/adaptive emulator system of

Chapter 4 requires very precise learning by the adaptive network. It becomes understand-

able that MRII had so much trouble learning the mapping presented by these random nets.

They are hard problems from a sensitivity point of view.

It is expected that trained networks would be less sensitive to weight perturbations.

This expectation results because no attention to optimal placement of decision hyperplanes

is made when generating a random net. A trained net on the otherhand has undergone

a series of adaptations. These adaptations sometimes help and sometimes hurt the global

performance of the net on the training set. In the long run though, the adaptations that help
will persist and the ones that hurt will be undone as the net approaches convergence. As

decision hyperplanes are shifted and adjusted during adaptations, one would expect them

to arrive at positions where their shifts affect fewer and fewer patterns in the training set

as convergence is reached. Thus, the theory derived should represent a worst case situation

for Madalines that have undergone training.



Chapter 7

Conclusions

7.1 Summary

Madaline Rule II was developed based on the principles of minimal disturbance. Some

modifications to these principles were required. The issue of circuit implementation of the

algorithm forced some compromises in the number and types of trial adaptations that would

be performed if minimal disturbance was the only guiding principle. Minimal disturbance

also led to a local minima phenomenon that required the implementation of a concept called

usage. Usage implements the concept of responsibility sharing by forcing the participation

of all hidden units in arriving at a hidden pattern representation of the input patterns.

MRII as presented in this report suffers from another kind of local minima phenomenon.

Rather than afflicting the hidden units, this failure of the algorithm is the result of the

output units. Certain output units will arrive at a solution to their part of the global

problem and "freeze" the hidden pattern set. This set, unfortunately, is not separable by

the rest of the output units in the manner they require. This situation is a most difficult one.

A departure from the principles of minimal disturbance is required but it is difficult to know

precisely how. A simple escape from this failure situation is to reinitialize the network with

random weights and begin again. This seems wasteful of the previous training performed.

The idea of using random changes of the weights to escape this failure was conceived. This

led to a study of the sensitivity of the mapping of a random Adaline to weight changes and

input errors.

The sensitivity analysis yielded a simple set of formulas. They predict quite well how the

mapping of an Adaline with randomly gencrated weights will be affected by weight changes
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and input errors. In nets where the weights of the units are set independently of each other,

the results can be applied to predict the sensitivity of the entire net. Such networks are

found to be quite sensitive to changes in their weights. The input/output mappings that

random networks generate can be very challenging for an adaptive network to learn.

In spite of failure modes and being tasked by difficult problems, MRII exhibits some

good performance. It has shown an ability to train networks to perform a wide variety of

tasks. It also exhibits interesting generalization properties. It was observed that training

and generalization performance track each other very closely. Generalization was also found

to be robust in networks that had many more units than the minimum necessary to solve a

given problem. The use of oversized nets can lead to impressive improvements in training

performance.

7.2 Suggestions for Further Research

The results of the sensitivity study have not been applied to the MRII failure mode. It

was hoped the findings would allow a more thoughtful approach to using random noise in

the weights for escaping the apparent local minima that MRII encounters. The sensitivity

results are strictly applicable to random nets. The sensitivity of trained nets needs to

be determined. Somewhere between these two extremes should lie the networks that are

associated with the failure mode.

The generalization properties of MRII should be explored further. The ability to main-

tain good generalization when using networks larger than required is very significant. No

specific mechanism for insuring this was included in MRII. Some investigation of why gen-

eralization is maintained might yield some useful information. It would be interesting to

check how many hidden patterns are used by overarchitectured nets in arriving at their

solutions. The geometric distances between hidden patterns mapped to the same output
pattern versus those mapped to other outputs should be checked. A related point is how

sensitivity is affected by overarchitecturing.
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